Effects of electroconvulsive therapy on metabolites in the brain - a prospective case-control study

Vera Erchinger (1), Lars Ersland (4), Ketil J Ødegaard (1,3), Ute Kessler (1,3), Leif Oltedal (1,2)

(1) Department of Clinical Medicine, University of Bergen, Bergen, Norway, (2) Department of Radiology, Haukeland University Hospital, Bergen, Norway, (3) Division of Psychiatry, Haukeland University Hospital, Bergen, Norway, (4) Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway

Introduction

- Electroconvulsive therapy, ECT, is by many clinicians regarded as the most effective acute treatment of major depression1
- We lack a good understanding of what ECT does to the brain and how it alleviates depression
- The study is part of a larger, multidisciplinary, ongoing project investigating mechanisms of action of ECT
- ECT’s effects on metabolites in the human brain will be characterized by use of Proton Magnetic Resonance Spectroscopy (H-MRS)

Study Design

- An outline of the study design is shown in figure 1
- So far 15 patients suffering from major depression (five men; age 25-78) and 6 healthy controls (group 2) have been included in the study
- Healthy controls are matched on factors age and sex
- Control group 1 will start in October 2015

Methods

- All patients were treated with right upper unilateral brief pulse (0.5 ms) ECT
- Imaging performed by: 3T GE Signa HDxT MR, 8 channel head coil or 3T GE Discovery 750 MR, 32 channel head coil
- For H-MRS single-voxel point resolved spectroscopy, SV PRESS is used
- The SV PRESS voxel measures 2x2x2 cm³ and placement alternates between the right and left anterior cingulate cortex (ACC) for every new patient
- LCMeta Software2 is used for data-analysis

Preliminary results

- All patients except one improved. Mean MADRS-score before treatment: 33.5 ± 10.5 and 16.3 ±16.7 after treatment
- There were decreases in the concentrations of Glutamate, Glycerophosphorylcholine (GPC) and Myo-inositol (mi), none of which were significant
- There was a significant decrease (≈10%, p<0.02) in the concentration of N-acetylaspartate (NAA) between the first MR session (before treatment) and third MR session (after treatment)

Discussion & Conclusion

- Results are preliminary and the number of patients limited
- So far, the control group is too small for comparison
- However, NAA was reduced after treatment
- Previous studies show conflicting results5,5
- NAA is the second most concentrated substance in the brain and thought to be predominantly present in neuronal cell bodies and neurites
- Reduction in the level of NAA has been consistently shown in studies of diseases that involve loss of neurons and axons6
- Although the exact function of NAA is unknown, the reduction of NAA seen after ECT may suggest neuronal loss or decreased neuronal integrity

References