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Objective. Preoperative risk prediction models can support shared decision-making before total hip arthroplasties
(THAs). Here, we compare different machine-learning (ML) approaches to predict the six-month risk of adverse events
following primary THA to obtain accurate yet simple-to-use risk prediction models.

Methods. We extracted data on primary THAs (N = 262,356) between 2010 and 2018 from the Nordic
Arthroplasty Register Association dataset. We benchmarked a variety of ML algorithms in terms of the area under the
receiver operating characteristic curve (AUROC) for predicting the risk of revision caused by periprosthetic joint infec-
tion (PJI), dislocation or periprosthetic fracture (PPF), and death. All models were internally validated against a ran-
domly selected test cohort (one-third of the data) that was not used for training the models.

Results. The incidences of revisions because of PJI, dislocation, and PPF were 0.8%, 0.4%, and 0.3%, respec-
tively, and the incidence of death was 1.2%. Overall, Lasso regression with stable iterative variable selection (SIVS)
produced models using only four to five input variables but with AUROC comparable to more complex models using
all 32 variables available. The SIVS-based Lasso models based on age, sex, preoperative diagnosis, bearing couple,
fixation, and surgical approach predicted the risk of revisions caused by PJI, dislocations, and PPF, as well as death,
with AUROCs of 0.61, 0.67, 0.76, and 0.86, respectively.

Conclusion. Our study demonstrates that satisfactory predictive potential for adverse events following THA can be
reached with parsimonious modeling strategies. The SIVS-based Lasso models may serve as simple-to-use tools for
clinical risk assessment in the future.

INTRODUCTION

Although primary total hip arthroplasty (THA) is a safe and

efficient intervention, early adverse events, such as revision

and death, occur. Approximately 2% to 3% of primary THAs are

revised within the first postoperative year, with dislocation

(12%–33%), periprosthetic joint infection (PJI; 11%–23%), and

periprosthetic fracture (PPF; 5%–18%) being the most frequently
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registered reasons.1–4 Furthermore, despite the constantly reducing
rates, postoperative mortality remains a recognized complication,
especially among older adult patients.5 Recently, incidence rates of
approximately 0.9% to 1.2% have been reported at 1 year after the
primary THA.4,6,7

With an aging and increasingly obese population, the inci-
dence of primary THAs is expected to increase by up to 200%
by 2030.8–10 Simultaneously, primary THAs are increasingly being
performed among more obese patients with more comorbidities
who are also known to be at elevated risk of short-term complica-
tions.1,11,12 Consequently, based on the recent trends, increases
of 31% to 70% in the volumes of revision THA have been esti-
mated in the United States, England, and Wales by 2030.13,14

Overall, the estimated increases in both primary and revision
THAs impose a substantial challenge to health care systems
worldwide, and novel strategies for optimizing treatment out-
comes and avoiding unnecessary complications are needed.

To alleviate the revision burden and minimize any unneces-
sary risks, directing the right type of treatment to the right individ-
ual and identifying high-risk patients requiring more intensive
follow-up play a central role. To preoperatively evaluate the risk of
revision and death following primary THA, several multivariable risk
prediction models have been introduced.15–20 Although the issue
is global, these models have typically been developed and internally
validated using data from a single arthroplasty register. Further-
more, the majority of the presented models rely on conventional
regression modeling strategies16 that might be outperformed by
machine-learning (ML)–based approaches, especially when the
event of interest is rare.21 However, to achieve improved perfor-
mance, ML methods require typically much more data than the
conventional approaches,22 and, hence, the best results are
expected to be achieved when the amount of data, in terms of both

the number of cases as well as variables included, is scaled up as
high as possible.

In the present study, we applied a range of well-established
ML algorithms with varying complexity to the Nordic Arthroplasty
Register Association (NARA) dataset, a unified representation of
the national hip arthroplasty registries of Sweden, Norway,
Denmark, and Finland, to compare different modeling strategies
for predicting the risk of the most common revision outcomes
and death following primary THA. With the use of multinational
data, we aimed at developing generalizable models that could
be easily applied to evaluate preoperative risk estimates for an
individual patient based on typical patient characteristics and
planned surgical parameters in any modern health care setting.

PATIENTS AND METHODS

Study population. Initially, all primary THAs registered in
the NARA dataset between 1995 and 2018 were extracted for
analysis. The dataset consists of pooled data from the national
hip arthroplasty registries of Sweden, Norway, Denmark, and
Finland and has been described in more detail previously.23,24 Eth-
ical approval for the register-based study was granted by the
appointed authority in each participating country: the Swedish Eth-
ical Review Authority (1184-18/2019-00812), the Finnish National
Institute of Health and Welfare (Dnro THL/1743/5.05.00/2014),
the Norwegian Data Inspectorate (ref 24.1.2017: 16/01622-3/
CDG), and the Danish Data protection agency (1-16-02-54-17).

The initial dataset consisted of 848,787 primary hip arthro-
plasties. Because of several changes in clinical practice regarding
the use of implant materials, femoral head size, and fixation, we
restricted our analyses to primary THAs performed since 2010,
representing the most current clinical practice (Figure 1).

848,787 All primary hip arthroplasties in
the NARA dataset

597,349 Excluded
159,809
386,848

674
5,120
16,694
17,286

Operations on contralateral joint
Surgery before 2010
Hip resurfacing arthroplasty
Outdated metal-on-metal devices
Less than 6 months of follow-up
Missing data for predictors of
interest

262,356 Included in the study

174,904 Training cohort 87,452 Test cohort

Randomly
divided

in a 2:1 ratio

Figure 1. Selection of patients into the study. NARA, Nordic Arthroplasty Register Association.
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Furthermore, we retained only primary THAs that had a minimum
follow-up time of at least 6 months to exclude operations per-
formed close to the last available date in the dataset for which
the occurrence of primary outcomes could not be verified. To pre-
vent dependent observations after bilateral arthroplasty, we
included only the first operation reported for each patient. Finally,
because some ML algorithms required the use of complete data,
we included only patients with complete information for all candi-
date predictors to enable direct comparison of the predictions
obtained using different methods. Because only 6% of the
patients were excluded because of missing data, the excluded
data points were assumed to be missing completely at random
and not induce any bias in the present analyses.25,26 Overall, this
left us with a total of 262,356 primary THAs. Finally, the data were
divided in a 2:1 ratio into separate training (random sample of
67% of the population, n = 174,904) and test (random sample
of 33% of the population, n = 87,452) cohorts, used for develop-
ing and internally validating the models, respectively.

Study outcomes and candidate predictors. For each
primary operation, we considered as our main outcomes of inter-
est the first revision surgical procedure owing to the three most
common reasons, PJI, dislocation or PPF, and death, during the
first 6 postoperative months. During modeling, each of these out-
comes was treated as a separate binary outcome for which spe-
cific risk prediction models were developed. Other reasons for
revision were not considered for risk prediction modeling. In all
countries, revision procedure was defined as a surgical procedure
including the exchange or removal of any component(s). The can-
didate predictors considered for risk prediction models included
previously identified risk factors for adverse events following
THA. The considered patient characteristics included age,19,27

sex,19,28 simultaneous bilateral operation,29 and primary
diagnosis,19,28,30 whereas surgical characteristics included fixa-
tion type,31 the use of trochanteric osteotomy,32 surgical
approach (posterior or nonposterior, including anterior, anterolat-
eral, and others),19,28,30 bearing couple (recoded based on the
combination of cup and caput materials),29,33 the diameter of
the femoral head,19,28 and the presence of hydroxyapatite coat-
ing on the cup or stem.34 The candidate predictors and other
baseline information have been summarized in more detail in
Table 1.

Model development and statistical analysis.
Optimally, a prediction model suitable for clinical use should be
both accurate and easy to use, using only data that are essential
for the predictions. To identify the best modeling approach for
each prediction task, we applied a range of ML algorithms to the
primary THA data in the training cohort, namely logistic
regression, classification tree modeling, random forest (RF),
gradient-boosting machines (GBMs), penalized logistic regres-
sion with both Lasso penalty (Lasso regression) and Ridge

penalty (Ridge regression), naive Bayes, and neural networks,
which are among the most common and popular methods used
widely for binary classification in various application areas.35

Among the applied models, logistic regression is considered as
the most conventional approach and can be used as a reference
for the other ML algorithms. Here, the logistic regression models
were trained using all candidate predictors without any additional
variable selection. Finally, we also applied Lasso regression in
combination with the stable iterative variable selection (SIVS) pro-
cedure previously suggested as an efficient method for develop-
ing simple-to-use risk prediction models with fewer variables but
retaining the same discrimination performance as the more com-
plex models.19,36,37 The discrimination performances of the ML
models were evaluated in the test cohort in terms of the area
under the receiver operating characteristic curve (AUROC). For
approximating model complexity, we determined the number of
nonzero regression coefficients or variables and model-generated
intervariable interactions with nonzero influence in top-performing
algorithms. The calibration of predicted risks, that is, the agree-
ment between the observed outcomes and predictions, was eval-
uated by grouping individuals by deciles of the predicted risk.
Further information on the applied ML methods, their hyperpara-
meters, and used software packages can be found in the Supple-
mentary Material.

All statistical analyses and mathematical modeling were con-
ducted using R statistical computing environment version 4.0.3
(R Core Team, 2016. R Foundation for Statistical Computing,
Vienna, Austria. URL https://www.R-project.org/). In addition to
method-specific packages reported in the Supplementary Mate-
rial (Supplementary Table S1), R packages ggplot2,38 and
pROC39 were used for the visualization of results and evaluation
of AUROC values, respectively. Comparisons between the char-
acteristics of training and test cohorts were performed using the
Mann-Whitney test for continuous variables and the chi-squared
test for categorical variables. The level of significance in all statisti-
cal comparisons was set at P < 0.05.

RESULTS

Characteristics of the study population. The patients
in the study cohort were, on average, aged 68 years, were typi-
cally female (59%), and had their hips operated for primary osteo-
arthritis (79%), mostly using uncemented fixation (42%) (Table 1).
No statistically significant differences were observed between
the characteristics of the training and test cohorts. Of the
262,356 hips included, within 6 months, 2,074 (0.8%) were
revised because of PJI, 1,104 (0.4%) because of dislocation,
and 759 (0.3%) because of PPF (Table 2). Other reasons for
revision were registered for 756 (0.3%) hips. A total of 3,144
(1.2%) deaths occurred during the first 6 postoperative
months.

ML RISK PREDICTION FOR ADVERSE ADVENTS AFTER THA 3
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Comparison of the ML methods. Overall, GBM was
the best-performing ML algorithm with AUROCs of 0.61
(95% confidence interval [CI] 0.59–0.63), 0.68 (95% CI
0.65–0.70), and 0.77 (95% CI 0.74–0.79) for revisions caused
by PJI, dislocation, and PPF, respectively, as well as with an
AUROC of 0.87 (95% CI 0.86–0.88) for death (Table 3).
However, in terms of AUROCs, there were no substantial dif-
ferences among the six top-performing models, including
GBM, conventional logistic regression, Lasso regression,
Ridge regression, Lasso regression with SIVS, and
RF. Compared with GBM, the largest difference among these
was a lower AUROC of RF (AUROC 0.85, 95% CI 0.84–0.86)
for predicting death.

Among the top-performing models, Lasso regression with
SIVS was able to produce models with the least complexity but
with similar accuracy as the more complex models (Figure 2A).
In total, the SIVS-based model for PJI included only four (13%)
variables and models for dislocation, PPF, and death, only five
(16%) variables each of the available 32 with nonzero influence
on risk predictions. Among all input data, Lasso with SIVS
identified age, sex, preoperative diagnosis, bearing couple, fix-
ation, and surgical approach as the minimum set of variables
sufficient for accurate risk predictions (Figure 2B). In contrast,
all the competing methods used nearly all 11 available variable
types and associated information to reach similar AUROCs. In
all comparisons, logistic regression, conventional Lasso
regression, and Ridge regression had virtually the same perfor-
mance and variables. Because of the good performance with
the minimum number of input variables, SIVS-based Lasso
models were considered for further evaluation as practical risk
prediction models.

Simple-to-use risk prediction models obtained
using Lasso regression with SIVS. The variables and regres-
sion coefficients obtained for each outcome using Lasso
regression with SIVS are summarized with example risk calcula-
tions in Table 4. Additional details on using the regression

Table 1. Patient and procedure characteristics for the included
operations in the training and test cohorts. All other variables except
for country and laterality were considered during predictive modeling*

Characteristics
Training cohort Test cohort
(n = 174,904) (n = 87,452)

Country, n (%)
Denmark 39,715 (22.7) 19,653 (22.5)
Norway 30,335 (17.4) 15,229 (17.4)
Sweden 73,003 (41.7) 36,558 (41.8)
Finland 31,851 (18.2) 16,012 (18.3)

Age, mean (SD), y 68.1 (11.1) 68.1 (11.0)
Sex, n (%)
Female 102,199 (58.4) 51,406 (58.8)
Male 72,705 (41.6) 36,046 (41.2)

Laterality, n (%)
Right 98,995 (56.6) 49,635 (56.8)
Left 75,909 (43.4) 37,817 (43.2)

Simultaneous bilateral
operation, n (%)

No 173,455 (99.2) 86,723 (99.2)
Yes 1,449 (0.8) 729 (0.8)

Preoperative diagnosis, n (%)
Primary osteoarthritis 138,661 (79.3) 69,331 (79.3)
Hip fracture 19,146 (10.9) 9,515 (10.9)
Nontraumatic femoral
head necrosis

3,988 (2.3) 2,109 (2.4)

Rheumatoid arthritis 1,752 (1.0) 900 (1.0)
Ankylosing spondylitis 175 (0.1) 81 (0.1)
Developmental dysplasia
of the hip

5,209 (3.0) 2,524 (2.9)

Slipped capital femoral
epiphysis

206 (0.1) 84 (0.1)

Perthes disease 649 (0.4) 283 (0.3)
Combination of slipped
capital femoral epiphysis
and Perthes disease

78 (<0.1) 34 (<0.1)

Other inflammatory 495 (0.3) 227 (0.3)
Others 4,545 (2.6) 2,364 (2.7)

Fixation, n (%)
Cemented 63,801 (36.5) 31,840 (36.4)
Hybrid 16,990 (9.7) 8,577 (9.8)
Inverse hybrid 20,423 (11.7) 10,323 (11.8)
Uncemented 73,690 (42.1) 36,712 (42.0)

Surgical approach, n (%)
Anterior, anterolateral and
others

77,873 (44.5) 38,779 (44.3)

Posterior 97,031 (55.5) 48,673 (55.7)
Bearing couple, n (%)
CoC 9,030 (5.2) 4,372 (5.0)
CoX 26,723 (15.3) 13,570 (15.5)
CoP 3,688 (2.1) 1,943 (2.2)
MoP 25,475 (14.6) 12,666 (14.5)
MoX 108,615 (62.1) 54,247 (62.0)
Other 1,373 (0.7) 654 (0.8)

Hydroxyapatite coating (cup),
n (%)

No 146,844 (84.0) 73,633 (85.5)
Yes 28,060 (16.0) 13,819 (14.5)

Hydroxyapatite coating
(stem), n (%)

No 107,777 (61.6) 53,622 (61.3)
Yes 67,127 (38.4) 33,830 (38.7)

Caput size, n (%)
22 mm 1,120 (0.6) 521 (0.6)

(Continued)

Table 1. (Cont’d)

Characteristics
Training cohort Test cohort
(n = 174,904) (n = 87,452)

28 mm 31,712 (18.1) 16,127 (18.4)
32 mm 85,458 (48.9) 42,651 (48.8)
36 mm 54,543 (31.2) 27,160 (31.1)
>36 mm 1,991 (1.1) 968 (1.1)
Other 80 (0.1) 25 (<0.1)

Trochanteric osteotomy,
n (%)

No 174,582 (99.8) 87,269 (99.8)
Yes 322 (0.2) 183 (0.2)

*CoC, ceramics on ceramics; CoP, ceramics on conventional (non-
crosslinked) polyethylene; CoX, ceramics on polyethylene crosslink;
MoP, metal on conventional (noncrosslinked) polyethylene; MoX,
metal on polyethylene crosslink.

VENÄLÄINEN ET AL4
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Table 2. The rates of short-term revision outcomes and death following primary total hip arthroplasty in the study
population

Outcome
All patients Training cohort Test cohort

(N = 262,356) (n = 174,904) (n = 87,452)

Revision procedure, n (%) 4,767 (1.8) 3,133 (1.8) 1,634 (1.9)
Periprosthetic joint infection 2,074 (0.8) 1,373 (0.8) 701 (0.8)
Dislocation 1,104 (0.4) 696 (0.4) 408 (0.5)
Periprosthetic fracture 759 (0.3) 504 (0.3) 255 (0.3)
Aseptic loosening 298 (0.1) 202 (0.1) 96 (0.1)
Other 458 (0.2) 304 (0.2) 154 (0.2)
Reason missing 74 (<0.1) 54 (<0.1) 20 (<0.1)

Death, n (%) 3,144 (1.2) 2,091 (1.2) 1,053 (1.2)

Table 3. Discrimination performance of the applied machine-learning methods in terms of the AUROC in the inde-
pendent test cohort*

Method

Periprosthetic
joint infection Dislocation Periprosthetic fracture Death

AUROC (95% CI) AUROC (95% CI) AUROC (95% CI) AUROC (95% CI)

Gradient-boosting machines 0.61 (0.59–0.63) 0.68 (0.65–0.70) 0.77 (0.74–0.79) 0.87 (0.86–0.88)
Lasso regression 0.61 (0.59–0.63) 0.67 (0.64–0.69) 0.76 (0.73–0.79) 0.87 (0.85–0.88)
Lasso regression with SIVS 0.61 (0.59–0.63) 0.67 (0.64–0.69) 0.76 (0.73–0.78) 0.86 (0.85–0.87)
Logistic regression 0.61 (0.59–0.63) 0.67 (0.64–0.69) 0.76 (0.73–0.78) 0.87 (0.85–0.88)
Ridge regression 0.61 (0.59–0.63) 0.67 (0.64–0.69) 0.75 (0.73–0.78) 0.87 (0.85–0.88)
Random forest 0.61 (0.59–0.63) 0.68 (0.65–0.70) 0.77 (0.74–0.79) 0.85 (0.84–0.86)
Neural network 0.61 (0.59–0.63) 0.66 (0.64–0.69) 0.75 (0.72–0.78) 0.86 (0.85–0.87)
Naive Bayes 0.59 (0.57–0.61) 0.66 (0.64–0.69) 0.72 (0.70–0.75) 0.85 (0.83–0.86)
Classification tree 0.60 (0.58–0.62) 0.55 (0.53–0.57) 0.74 (0.71–0.76) 0.85 (0.84–0.86)

*AUROC, area under receiver operating characteristic curve; CI, confidence interval; SIVS, stable iterative variable
selection.

Periprosthetic fracture Death
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Figure 2. Evaluation of the variables used by the top-performing models. (A) The complexity of the models in terms of the number of regression
coefficients or variables and intervariable interactions (specifically in GBMs) with nonzero influence on model predictions versus discrimination per-
formance in terms of AUROC in the test cohort. Horizontal lines indicate 95% confidence intervals. Ridge regression, conventional Lasso regres-
sion, and logistic regression had nearly identical performance. (B) Summary of the variables with nonzero influence identified by different modeling
approaches. The color indicates the fraction of variable levels with nonzero influence in the final models. AUROC, area under the receiver operating
characteristic curve; GBM, gradient-boosting machine; HA, hydroxyapatite; SIVS, stable iterative variable selection.
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coefficients for risk prediction and further examples (Supplemen-
tary Tables S2-S5) can be found in the Supplementary Material.
For PJI, the model identified advanced age, male sex, and a pre-
operative diagnosis of hip fracture as risk factors, whereas
ceramic-on-ceramic bearings decreased the risk compared with
other bearing types. For dislocation, advanced age, a preopera-
tive diagnosis of hip fracture, uncemented and hybrid fixations,
and posterior approach were identified as risk factors. For PPF,
the identified risk factors were advanced age; a preoperative
diagnosis of hip fracture; and the use of uncemented, hybrid, or
inverse hybrid fixations. For death, advanced age; male sex; and
a preoperative diagnosis of hip fracture, nontraumatic femoral
head necrosis, or other unspecified diagnosis were identified as

key risk factors. All risk predictions made using the simple-to-use
SIVS-based models were in good agreement with the observed
outcome rates and showed no signs of substantial overfitting or
underfitting (Supplementary Figure S1).

DISCUSSION

In the present study, we compared a range of ML algorithms
to identify the best modeling approach for predicting the risk of
the most common short-term revision outcomes (ie, PJI, disloca-
tion, and PPF) as well as death within 6 months from the primary
THA, based on the NARA dataset. We observed that there was
little difference in the obtained AUROCs between the applied

Table 4. Regression coefficientsa in the Lasso models built using stable iterative variable selection procedure*

Variable

Regression coefficient (β) for model

PJI Dislocation PPF Death

Age (per 10 years) 0.132 0.164 0.353 0.802
Sex
Female – – – –

Male 0.496 – – 0.502
Preoperative diagnosis
Primary osteoarthritis – – – –

Hip fracture 0.389 0.980 0.583 2.265
Nontraumatic femoral head necrosis – – – 1.281
Rheumatoid arthritis – – – –

Others – – – 2.777
Fixation
Uncemented – 0.801 2.606 –

Cemented – – – –

Hybrid – 0.775 0.890 –

Inverse hybrid – – 2.039 –

Bearing
MoX – – – –

MoP – – – –

CoX – – – –

CoC −0.542 – – –

CoP – – – –

Other – – – –

Surgical approach
Anterior, anterolateral, and others – – – –

Posterior – 0.355 – –

Example calculationsb

Raw patient score (sum of
patient value × β coefficient)

1.379 2.565 3.231 8.280

Intercept −6.013 −7.501 −10.214 −11.345
Transformed score = 1

1+ exp − Intercept + Raw scoreð Þð Þ 0.010 or 1.0% 0.007 or 0.7% 0.001 or 0.1% 0.045 or 4.5%

*CoC, ceramics on ceramics; CoP, ceramics on conventional (noncrosslinked) polyethylene; CoX, ceramics on poly-
ethylene crosslink; MoP, metal on conventional (noncrosslinked) polyethylene; MoX, metal on polyethylene cross-
link; PJI, periprosthetic joint infection; PPF, periprosthetic fracture.
aThe beta coefficients indicate the impact of one-unit change in a predictor variable, given in parentheses, on the
response variable when the other predictors are held constant. A positive coefficient indicates risk-increasing effect
and negative risk-decreasing effect. Fields without a numerical value indicate that the specific variable is not
needed for predicting the risk of the designated outcome (ie, regression coefficient equals zero) and, therefore,
for categorical variables, functions as a reference group.
bExample calculations of the average estimates of risk are given for 75-year-old female patients with hip frac-
ture diagnosis and no simultaneous bilateral operation who are having a cemented total hip arthroplasty sur-
gery performed using the posterior approach (no trochanteric osteotomy) and with implant components
having a metal on polyethylene bearing surface, 36-mm femoral head size, and no hydroxyapatite coating
on the cup. More details on the calculations and additional examples (Supplementary Tables S2-S5) can be
found in the Supplementary Material.
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methods and that the complexity and number of required vari-
ables in risk prediction models can be greatly reduced with mini-
mal loss in prediction accuracy. Finally, by using Lasso
regression with SIVS, the modeling strategy requiring the fewest
input variables, we developed simple-to-use preoperative risk
prediction models that may assist in preoperative estimations of
the expected levels of risks and clinical decision-making in the
future.

A key finding in our study was that, despite the large
amounts of operations in THA register data, accurate predictions
can be obtained even with simpler modeling strategies. Similar
benefits of Lasso regression in the reduction of input variables
have also been reported before,40 but here the Lasso regression
accompanied with the SIVS procedure produced substantially
simpler models without any reductions in prediction accuracy
compared with the conventional Lasso. This implies that with
careful variable selection, the most essential relationships
with each outcome of interest can be captured with simple linear
relationships and that models for revisions and death following
THA based on registry data do not necessarily benefit from more
sophisticated approaches involving modeling of deep intervari-
able interactions and complex nonlinear relationships. This obser-
vation is identical to our previous studies using the same
approach in other prediction tasks.36,37 The use of simpler model-
ing strategies is also more practical because the models can be
applied using simple risk equations without dedicated computer
software. Finally, the effect of each risk factor and the obtained
results are also easier to interpret, helping to communicate the
expectations of the operation with the patient.

Overall, the model for death within the first 6 postoperative
months reached the highest discrimination performance and
was comparable to the excellent performance observed in our
previous risk prediction study using the Finnish Arthroplasty Reg-
ister (FAR).19 The Lasso regression with SIVS identified advanced
age, male sex, preoperative hip fracture, nontraumatic femoral
head necrosis, or other unspecified preoperative diagnosis as
the most important variables increasing the risk of death. Similar
findings concerning intuitive or well-established risk factors, such
as advanced age,27,41 male sex,27,42 and hip fracture,43 have
thorough previous documentation.

In contrast to our previous study,19 the model for revisions
owing to PPF reached substantially better performance (NARA
AUROC 0.76 vs FAR AUROC 0.65). Although the revision rates
were quite similar between the two studies (0.3% vs 0.5%), the
current dataset contained approximately 10 times more opera-
tions, including more cases with cemented stems, potentially
explaining the improvement, because the ML algorithms had sub-
stantially more material for training the models. Again, the Lasso
regression with SIVS also identified risk factors associated with
revisions caused by PPF before, including advanced age; preop-
erative diagnosis of hip fracture; and the use of uncemented,
hybrid, and inverse hybrid fixations.31,44–46

The model predicting the risk of dislocation reached similar
moderate performance as in our previous study (NARA AUROC
0.67 vs FAR AUROC 0.65)19 and consisted of several known risk
factors, such as advanced age, preoperative hip fracture diagno-
sis, and posterior approach.28,30 Furthermore, Thoen et al
recently reported elevated dislocation risk after the use of unce-
mented fixation compared with cemented and inverse hybrid
fixations,47 thus supporting the selection of uncemented and
hybrid fixations as risk factors. This finding, however, could also
be explained by time-dependent confounding related to the
increased use of uncemented fixation in the more recent time
period.

The models for revisions because of PJI reached slightly
lower performance compared with our previous study using the
FAR data19 (NARA AUROC 0.61 vs FAR AUROC 0.68) as well
as the risk calculator developed based on the Swedish Arthro-
plasty Register (AUROC 0.68).20 However, the model consisted
of previously identified risk factors, such as male sex and preoper-
ative hip fracture.33 The ceramic-on-ceramic bearing has also
previously been associated with a reduced infection revision
risk,29,33,48 although the finding might be affected by residual
confounding because this bearing type tends to be used in youn-
ger and healthier patients with fewer comorbidities.

Even though all models reached moderate to excellent dis-
crimination performance and the model predictions were in good
agreement with the observed outcome rates, our study still has
several limitations. First, the completeness of revision arthroplas-
ties in the NARA member countries is in the range of 85% to
94%,49 indicating that not all revisions are reported to the national
registries, causing potential bias for our results. Second, the
NARA dataset contains only the variables that all countries can
deliver, and not all key risk factors for each outcome have been
included during modeling. For example, greater body mass index
and the American Society of Anesthesiologists physical status
classification have previously been listed as important risk factors
for revisions because of infection,16,20,29,50 and thus their inclu-
sion might have led to even simpler models and improved perfor-
mance. Similarly, the model for death might be further simplified
by replacing some of the variables with the American Society of
Anesthesiologists physical status classification, a significant risk
factor for mortality following THA.27,51,52 Overall, the benefit of
ML methods might become more apparent after the inclusion
of more complex data and novel additional risk factors. Finally,
regardless of large amounts of operations in training and test
cohorts from four countries, it would be beneficial to externally val-
idate the performance of the developed models in additional
patient cohorts that could reveal the potential need for the recali-
bration of model coefficients and to identify potentially redundant
variables.20,52

In conclusion, the present study demonstrates that when
predicting revision and death within 6 months of primary THA
based on arthroplasty register data, simpler models can achieve
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performance equal to that of complex modeling strategies but
with reduced model complexity and improved usability. The
simple-to-use and intuitive models developed using Lasso
regression with SIVS for PJI, dislocation, PPF, and death all
reached moderate to excellent performance. Once externally val-
idated, the developed models have potential to facilitate clinical
decision-making by identifying high-risk patients and optimal sur-
gical parameters that, in the best-case scenario, could lead to fur-
ther reduced rates of adverse events in the future.
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