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ABSTRACT 

Background: Arthroplasty registry data are traditionally analysed using standard 

survival methods, that is, Kaplan-Meier survival curves and the Cox proportional 

hazards model. The outcome of interest is usually the time from the primary 

procedure until occurrence of a single event – revision of the prosthesis. Other 

outcomes may also be of interest, for example, time to death, time to receiving 

another arthroplasty and the association between covariates and these events. The 

rise in life expectancy of the population combined with an increasing number of joint 

replacements being performed has resulted in many patients experiencing several 

joint replacement procedures during their lifetime. The analyses of registry data such 

as these require the use of more sophisticated statistical methods. Application and 

evaluation of statistical methods to analyse registry data containing complex 

arthroplasty histories are lacking. 

Aim: The aim of this thesis was to investigate the use of statistical methods in the 

analysis of multiple event data contained in arthroplasty registries. Within this broad 

aim the objectives were to investigate the use of competing risks methods in 

estimating the risk and rate of revision, investigate methods for handling covariates 

with time-varying effect, investigate the use of multi-state modelling techniques in 

providing a more comprehensive analysis and description of complex arthroplasty 

histories than traditional survival methods and to develop a notation system to 

facilitate the description and analysis of arthroplasty event history data. 

Methods: Data were obtained from the Australian Orthopaedic Association National 

Joint Replacement Registry and the Norwegian Arthroplasty Register. Estimates of 

revision from the Kaplan-Meier method were compared to estimates from the 

cumulative incidence function which accounts for the competing risk of death. 

Effects of covariates on the rate and risk of revision were estimated with competing 

risk regression and compared to estimates from the Cox proportional hazards model. 
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Multi-state models were set up and applied to the data. The Summary Notation for 

Arthroplasty Histories (SNAH) was developed in order to help manage and analyse 

this type of data.  

Results: The Kaplan-Meier method substantially overestimated the risk of revision 

compared to estimates using competing risks methods when the incidence of the 

competing risk of death was high. The influence of some covariates on the hazard 

rate was different to the influence on the actual probability of occurrence of the event 

as this was modulated by their relationship with the competing event. Multi-state 

models, in combination with SNAH codes, were well suited to the management and 

analysis of arthroplasty registry data on patients who had multiple joint procedures 

over time. Multi-state modelling techniques proved useful in the investigation of the 

progression of end-stage osteoarthritis in data from two national arthroplasty 

registries. 

Conclusion: In the presence of competing risks, the Kaplan-Meier method may lead 

to biased estimates of the risk of revision, and hazard ratios obtained from the Cox 

proportional hazards model and competing risks regression models need to be 

interpreted with care. Multi-state models provide a useful tool to analyse data 

containing complex arthroplasty histories. 
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1 INTRODUCTION  

This thesis investigates methods for analysis of time to event data in arthroplasty 

registry data. Arthroplasties—specifically joint replacements—are common surgical 

procedures. Registries collect and record data on these procedures and serve as 

important sources of data for evaluating specified outcomes of joint replacements. In 

order for arthroplasty registries to provide accurate information for their stakeholders, 

the use of appropriate statistical methods to analyse the data is of great importance. This 

thesis argues for the use of methods that appropriately account for the potential of 

multiple events, rather than standard univariate survival methods currently employed, 

when analysing time to event data contained in arthroplasty registries. 

1.1 Background  

Patient registries are organised systems that contain observational study data for 

populations characterised by particular diseases, conditions or exposures. They serve 

predetermined purposes such as monitoring safety of medical devices, measuring 

quality of care, describing the natural history of diseases, and determining health 

outcomes and treatment effects [1].  

Patient registries are important sources of data for observational studies which are the 

mainstay of population health research. Traditionally, observational studies have had a 

lower ranking on the evidence scale than randomized controlled trials (RCTs) but the 

advantages of observational studies based on registry data are increasingly being 

recognized [2]. Some of these are that the data often come from large and varied groups 

of patients and the outcomes can therefore be generalized to a wide range of patients. 

They can be used pragmatically to evaluate treatments that are administered in the real 

world rather than those administered under what are often rigid RCT regimes and 

restrictive patient exclusion criteria. For rare diseases observational studies based on 

registry data can be used to measure outcomes where clinical studies are not feasible or 
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in situations where it is unethical to conduct RCTs. Furthermore, RCTs are often time 

consuming and resource intensive [3-6]. 

1.1.1 Arthroplasty registries 

Patient registry data are particularly useful for evaluating outcomes of procedures which 

require relatively long follow up, such as the outcome of joint replacements [7, 8]. 

Sweden was the first country to establish a national joint replacement registry in 1975 

[9], and following its success, several other countries have established national joint 

replacement registries [10]. One important purpose of these registries is to identify 

poorly performing prostheses thereby improving the quality of joint replacements [11].  

In most countries prostheses are introduced on the market without prior clinical trials 

and thus continuous post marketing surveillance is important. Information on the 

collected data is typically disseminated in annual reports.  

The incidence of joint replacements has been increasing in most countries over the past 

decade and it is expected that this will continue [12] as the incidence of the main risk 

factors such as osteoarthritis, age and obesity increase in the population. In the United 

States increases in primary hip and knee replacements of 174% and 673% respectively 

have been predicted for the period 2005 to 2030 [12]. In Australia there was an increase 

in primary total hip replacements and primary total knee replacements of 44% and 84% 

respectively from 2003 to 2012 [13] . 

1.1.2  Time to event analysis  

In order to evaluate the outcome of joint replacement correctly, the use of appropriate 

statistical methods is important. Survival analysis, or time to event analysis, is 

commonly used in the analysis of registry data. The main outcome of interest in joint 

replacement registry data is ‘time to revision’ – the time interval between the date of 
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insertion of the prosthesis and the date of revision. Revision is a procedure where one or 

more of the prosthesis’ components is removed and/or replaced. It signals failure of the 

prosthesis. A characteristic of time to event data1

14

 is that it may contain observations 

with incomplete information in that the exact survival time is not known, for example 

when a study ends before a revision is observed. These incomplete observations are 

called censored observations. The survival methods most commonly used in the 

analysis of joint replacement registry data are Kaplan-Meier survival curves [ ] and 

Cox proportional hazards models [15]. These methods are extremely popular and the 

two papers introducing them are among the most cited statistical papers in the research 

literature [16]. The Kaplan-Meier method estimates a survival curve which indicates the 

proportion of subjects who have not yet experienced the event of interest at various time 

points. The method was initially based on actuarial life tables to estimate the proportion 

of subjects who had not yet died, but would eventually do so. The Kaplan-Meier 

method accounts for censored observations and thereby utilizes the information 

contained in the incomplete data. A crucial assumption is that censoring times and 

survival times are independent, that is, at time 𝑡𝑡 patients whose time is censored will 

have the same risk of experiencing the event as those whose time is not censored, i.e. 

that censoring is non-informative. If patients are censored administratively this might be 

reasonable, but if they are lost to follow-up or have experienced another event then the 

assumption is often violated. For example, when estimating the risk of revision, subjects 

who have died (and therefore would be censored in the Kaplan-Meier method) clearly 

do not have the same risk of revision as subjects who are still alive, hence the censoring 

time is not independent. This violation of independence occurs due to a competing risk 

(where in this case the competing risk is death). Competing risks, where relevant, are 

                                                 

1 Treatment of the word “data” as singular or plural has been a vexed question in both scientific and non-
scientific literature for almost a century.  In this thesis I will generally treat the word as plural but when it 
is either obviously being used as a “mass noun” or it would otherwise sound peculiar, I will take the 
liberty of treating it as singular. 

 



 

4 

 

often not accounted for in statistical analyses of survival data, leading to potential 

biased estimates of the survival curves [17]. Understanding the role of competing risks 

in registry data is one of the objectives of this thesis.  

Another important function in survival analysis is the hazard rate, which is the 

instantaneous rate of occurrence of an event, conditional on the event having not yet 

occurred.  The Cox proportional hazards (PH) model enables estimation of the effect of 

covariates on the hazard rate. The model is regarded as a semi-parametric because the 

baseline hazard function is not explicitly estimated. The covariates act multiplicatively 

on the baseline hazard rate and the effects are expressed as ratios. One key assumption 

of the model is that the hazard ratio is constant, that is, independent of time. The 

assumption of proportionality is not always plausible and is often assumed without 

justification [18]. Causes of non-proportionality are omission of covariates, incorrect 

functional form of the covariate or the existence of time dependent covariates or 

covariates with time-varying effects. Time dependent covariates are covariates that 

change value over time, whereas covariates with time-varying effect are covariates 

whose effect on the hazard rate changes over time. Depending on the cause, different 

methods exist to deal with non-proportional hazards in the Cox model [19], but no 

consensus on which method is the best appears to have been reached. An alternative 

model to the Cox PH model is Aalen’s additive hazard model [20]. In Aalen’s additive 

model the effect of covariates acts additively on the baseline hazard rate and both time-

dependent covariates and time-varying coefficients can easily be incorporated. The use 

of Aalen’s model on registry data and exploration of methods for handling covariates 

with time-varying effects are also objectives of this thesis. 

1.1.3  Regression models  

In traditional survival analysis where the outcome is time to a single event, there is a 

one-to-one relationship between the hazard rate and the survival function. As a result, 

estimates from the Cox model can be used to directly estimate the effect of covariates 

on survival probabilities. However, in scenarios with competing risks this relationship is 
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more complicated because the probability of survival for one cause depends on the 

hazard rates for all the causes (cause specific hazards). One may find that some 

covariates have different effects on the cause specific hazard rates than they do on the 

survival probabilities. Hence, in the presence of competing risks the estimates from the 

Cox PH model require a different interpretation. Fine and Gray [21] have developed a 

method for competing risks scenarios to model the direct effect of covariates on survival 

probabilities for the event of interest. Regression methods for competing risks scenarios 

have not been used much in orthopaedic research, although they are often relevant. An 

objective of this thesis is to explore the use of competing risks regression models on 

arthroplasty registry data. 

1.1.4  Arthroplasty histories  

An increasing number of individuals have several joint replacement procedures and, 

with time, joint replacement registries will contain increasing amounts of data on 

individuals with complex arthroplasty histories. These histories may contain 

information on primary arthroplasties in multiple joints with associated revisions and re-

revisions. One issue that arises as a result of this expansion is the management and 

handling of large datasets that evolve over time and contain multiple events for each 

individual. Developing a notation system for recording and communicating patient-level 

arthroplasty histories is one of the objectives of this thesis. Another issue is that 

statistical methods other than those traditionally employed for single-outcome data are 

required. Several methods exist to deal with time to event data with multiple outcomes. 

One method is to represent longitudinal data with several events as a multi-state model 

where an individual occupies and moves between a finite number of states characterised 

by conditions such as having had a joint replacement or a revision. A multi-state model 

can account for time dependent covariates which can be included as transient states. The 

competing risks model is an example of a simple multi-state model with two or more 

mutually exclusive end-states. One of the objectives of this thesis is to investigate the 

use and suitability of multi-state modelling techniques in providing a comprehensive 

analysis and description of complex arthroplasty histories contained in joint 
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replacement registries. Furthermore, since joint replacement is most often performed for 

treatment of end-stage osteoarthritis, an objective is also to explore the use of multi-

state models on arthroplasty registry data to provide information on the progression of 

osteoarthritis. 

1.2 Thesis aim  

The overall aim of this thesis is to investigate the use of statistical methods in the 

analysis of time to event data in arthroplasty registries allowing for the potential of 

multiple events. Within this broad aim, the objectives are to: 

• Apply competing risks methods to arthroplasty registry data to investigate the 

degree to which the probability of revision is biased using the Kaplan-Meier 

estimates and if present, to comment on whether this bias is clinically relevant. 

• Apply competing risks regression models to determine the effect of covariates 

on the rate and the risk of revision and death. 

• Investigate methods of handling covariates with a time-varying effect. 

• Investigate the use of multi-state modelling techniques in providing a more 

comprehensive analysis and description of complex arthroplasty histories held in 

arthroplasty registries than traditional survival methods. 

• Develop a notation system to facilitate the description and analysis of 

arthroplasty event history data. 

• Apply multi-state models to investigate the progression of joint replacements (a 

surrogate for end-stage osteoarthritis) in data from two national joint 

replacement registries.  
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1.3 Thesis outline 

Chapter 2 provides an introduction to time to event analysis, the important functions 

and issues with estimating the survival/failure curves and effects of covariates on the 

hazard rate. Multi-state models and competing risks are described. Literature pertaining 

to the specific aims (as outlined above) is reviewed and specific issues relating to the 

analysis of arthroplasty registry data are considered.  

Chapter 3 describes the data sources in this thesis, the Australian Orthopaedic 

Association National Joint Replacement Registry (AOA NJRR) and the Norwegian 

Arthroplasty Register (NAR).  

Chapters 4 to 7 consist of articles, three of which have been published and one which 

has been accepted for publication2

Chapters 6 and 7 consider the use of multi-state models in the analysis of multiple 

events in joint replacement registry data. In Chapter 6, which contains a published 

article, the theory and issues with multi-state models are addressed and a multi-state 

model is developed. The Summary Notation for Arthroplasty Histories (SNAH) which 

facilitates the description and analysis of arthroplasty registry data is introduced. In 

Chapter 7 multi-state models are applied to data from the AOA NJRR and the NAR to 

, each addressing different aspects of time to event 

analysis of arthroplasty registry data with multiple events. Chapter 4 contains a 

published article in which non-parametric competing risks methodology is applied to 

arthroplasty registry data and the results are compared to those obtained from the 

Kaplan-Meier method. In Chapter 5 the focus is on regression methods in competing 

risks scenarios and the inclusion of covariates with time-varying effects. The published 

article in this chapter investigates the effect of covariates on the rate and on the risk of 

revision. 

                                                 

2 First published online 26th  December 2012. 
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investigate the progression of hip and knee osteoarthritis. The article in this chapter has 

been accepted for publication. 

Chapter 8 contains a summary of the findings and contributions to knowledge in the 

thesis, addresses limitations and outlines topics for further research in this area. 
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2 ANALYSIS OF TIME TO EVENT DATA  

This chapter begins by describing the basic elements of survival analysis and then goes 

on to discuss some of the approaches used to model both single and multiple event 

(event history) survival data.  The aim of the chapter is to review literature on survival 

analysis of relevance to the aims of this thesis and to provide a convenient summary 

orientation to many of the modern statistical approaches to modelling survival data, 

some of which will be discussed in more detail in succeeding chapters.  

Survival analysis – or analysis of time to event – is the analysis of data where the 

outcome is the time to the occurrence of one or multiple event(s) of interest. A 

particular characteristic of these data is that they may contain incomplete observations if 

events are not observed within the study period. These incomplete observations are 

referred to as censored events. There are several forms of censoring and each requires 

the use of different statistical methods in its analysis. Right censoring occurs if it is 

known that a survival time is greater than that observed, for example if an individual is 

lost to follow up or a study is closed for administrative reasons before the event has 

occurred. Left censoring occurs if a subject has experienced the event before the 

beginning of the study, but the exact timing of this event is not known. A related term is 

left-truncation which relates to the design of the study and means that subjects have 

been at risk of the event before the start of the study. Interval censoring takes place 

when the event occurs during the study period but the exact time is not known, only that 

it occurred in a certain time interval. Right censoring is the most commonly occurring 

type and will be considered in the following discussion.  

The risk set at a particular point in time consists of individuals who (at time 𝑡𝑡) are at 

risk of experiencing the event of interest, that is, individuals who have entered the study 

and have survived up to time 𝑡𝑡. Individuals leave the risk set either when they 

experience the event, or when they are censored. 
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The main functions of interest in this context are the survival function, the hazard 

function and the cumulative hazard function. With 𝑇 a random variable of survival 

times, the survival function is the probability of not experiencing the event by time 𝑡𝑡: 

𝑆(𝑡𝑡) = 𝑃(𝑇 > 𝑡𝑡) = 1 − 𝑃(𝑇 ≤ 𝑡𝑡) = 1 − 𝐹(𝑡𝑡), 

where 𝐹(𝑡𝑡) is the cumulative distribution function. The hazard function is usually 

interpreted as the instantaneous rate of experiencing an event (given that the individual 

is at risk at the beginning of a short time interval): 

𝜆𝜆(𝑡𝑡) = lim
Δ𝑡→0

1
∆𝑡𝑡
𝑃(𝑡𝑡 ≤ 𝑇 < 𝑡𝑡 + ∆𝑡𝑡|𝑇 ≥ 𝑡𝑡) 

= −
𝑑 𝑙𝑜𝑔{𝑆(𝑡𝑡)}

𝑑𝑡𝑡
 , 

 where ∆𝑡𝑡 denotes a small interval of time and 𝑃 is the conditional probability that the 

survival time of a subject is between 𝑡𝑡 and 𝑡𝑡 + ∆𝑡𝑡, given that a subject has survived up 

to time 𝑡𝑡. 

The cumulative hazard function represents the total accumulated risk in the interval 

(0, 𝑡𝑡): 

Λ(t)=� 𝜆𝜆(s)𝑑𝑠.
s=t

s=0
 

The survival function, the hazard, and the cumulative hazard function are 

mathematically related such that:  

S(t)=exp�−� 𝜆𝜆(s)𝑑𝑠
𝑠=𝑡

𝑠=0
�=exp(−Λ(t)) 

and  
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F(t)=1-exp �−∫ 𝜆𝜆(s)𝑑𝑠𝑠=𝑡
𝑠=0 �. 

Hence, there is a one-to-one correspondence between the risk and the rate functions 

[22]. 

2.1 Non-parametric methods 

For discrete observations of time, the survival function is traditionally estimated non-

parametrically by the Kaplan-Meier estimator [14]:  

𝑆̂(𝑡𝑡) = ��
𝑛𝑗 − 𝑑𝑗
𝑛𝑗

�
𝑡𝑗≤𝑡

 

where 𝑛𝑗 is number of individuals in the risk set and 𝑑𝑗 is number of events at time 𝑡𝑡𝑗. 

As stated in 1.1.2, an important assumption is that censoring is non-informative. Groups 

are often compared with different modifications of the log-rank statistic [23, 24]. The 

cumulative hazard function is typically estimated non-parametrically by the Nelson-

Aalen [25, 26] estimator: 

Λ�(𝑡𝑡) = �
𝑑𝑗
𝑛𝑗𝑡𝑗≤𝑡

 

In a plot of the Nelson-Aalen estimator versus time, the slope of the plot is an estimate 

of the hazard rate, e.g. a constant slope indicates a constant hazard. The results from 

non-parametric methods are presented in graphs and/or tables. Since the estimated 

distribution is discrete, the continuous hazard function needs to be estimated with the 

aid of smoothing techniques [27]. 

2.2 The Cox proportional hazards model 

The standard method for regression analysis used to determine the effect of covariates 

on the hazard function is the Cox Proportional Hazards (PH) model [15]. In this model, 
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the hazard at time 𝑡𝑡 for individuals with a vector of covariates 𝑿 and regression 

coefficients 𝜷  is:  

𝜆𝜆(𝑡𝑡) = 𝜆𝜆0(𝑡𝑡)exp (𝜷𝑇𝑿),  

where the superscript “T” indicates the transpose of the column vector. Assuming that 

the baseline hazard function 𝜆𝜆0(𝑡𝑡) is the same, the hazard (rate) ratio (HR) comparing 

subjects with covariate values 𝑿𝟏 relative to those with 𝑿𝟎 is:  

𝐻𝐻𝑅𝑅 = exp {𝛃𝐓(𝐗𝟏 − 𝐗𝟎)}. 

Thus, the covariates are assumed fixed over time and the hazards over time are assumed 

to be proportional, that is, the HR is constant. Although a functional form for the 

covariates is specified, no particular distribution of survival times is postulated (indeed 

the baseline hazard function is not even estimated), and so the model is said to be semi-

parametric. For single event survival data there is a direct relationship between the 

hazard function and the survival function, hence the Cox PH model can be used to 

estimate the effect of covariates on the survival function [28]. A stratified Cox PH 

model is fitted by allowing the baseline hazard function to be different for each value of 

the stratification variable. The obtained regression estimates are then the same within 

each stratum. In this scenario, the effect of the stratification variable on the hazard 

cannot be assessed. Specific estimates of these effects can be obtained by introducing 

interactions between strata and covariates. One advantage of the Cox PH model is that it 

is flexible in estimating the effects on the hazard for different values of a covariate [27], 

but the assumption of proportionality is not always plausible and is often assumed 

without justification [18]. Furthermore, the model is sensitive to omission of covariates, 

which can lead to biased regression coefficients or violation of the proportional hazards 

assumption [27, 29]. 
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2.2.1 Time-dependent covariates  

Time-dependent covariates are covariates whose values change over time. They are 

often classified into external and internal covariates [30] to aid interpretation of the 

results. External covariates are considered not to be generated by a subject and do not 

require a subject to be under observation. Examples might include air-pollution or age 

of a subject. Internal covariates change with the subject, for example a subject’s blood 

pressure over time. Because the values of internal time-dependent covariates are only 

observed if the subject survives, it is not appropriate to use these covariates in time to 

event models to make predictions [31]. In the presence of internal time dependent 

covariates, the relationship between the survival function and hazard function do not 

hold [31]. 

When a time dependent covariate 𝑥(𝑡𝑡) is introduced in the Cox PH regression model the 

hazard becomes: 

𝜆𝜆(𝑡𝑡) = 𝜆𝜆0(𝑡𝑡)exp{𝜷𝑻𝑿(𝑡𝑡)}. 

Modelling time-dependent covariates as time-fixed can lead to time-dependent bias. 

Van Walraven et al. [32] conducted a study of papers using survival analysis from a 

selection of medical journals and found that time-dependent bias was not only common, 

but that correction of the bias could have changed the conclusion in over half of the 

studies examined. Beyersmann [33] showed that treating time-dependent covariates as 

time-fixed generally leads to a smaller hazard ratio in a Cox PH model. However, using 

time-dependent covariates in the Cox PH model is more complicated than using time-

fixed covariates and one has to pay careful attention to how the functional form of the 

covariates are specified and how the results are interpreted [34]. 

2.2.2 Time- varying coefficients  

One cause of non-proportionality in the Cox PH model occurs when the effect of 

covariates on the hazard rate varies with time. If this is not accounted for, the results 
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may be biased [35]. There are several approaches to accommodate time-varying effects. 

Cox in his original article [15] suggested adding a time by covariate interaction in the 

model: 

𝜆𝜆(𝑡𝑡) = 𝜆𝜆0(𝑡𝑡)exp{𝛽𝑥 + 𝛽∗𝑥𝑓(𝑡𝑡)}, 

where 𝑓(𝑡𝑡) can be any function of time. However, it may be difficult to choose an 

appropriate function and the wrong choice may result in incorrect interpretation of the 

results [36]. Other approaches to handle covariates with time-varying coefficients in the 

Cox PH model include stratifying on the covariate, using a weighted average of the 

hazard ratio, calculating piecewise constant hazard ratios, and methods based on splines 

or smooth functions [19, 36]. 

2.3 The additive Aalen model 

An alternative to the Cox PH model is Aalen’s non-parametric additive hazard 

regression model [20]. The model is well suited to handle time-dependent covariates 

and covariates with a time-varying effect. In this model the hazard for the 𝑖𝑡ℎ individual 

with vector of covariates 𝑿𝒊(𝑡𝑡) = �𝑥𝑖1(𝑡𝑡), 𝑥𝑖2(𝑡𝑡), . . , 𝑥𝑖𝑝(𝑡𝑡)�
𝑇
is: 

𝜆𝜆𝑖(𝑡𝑡|𝑥𝑖) = 𝛽0(𝑡𝑡) + 𝛽1(𝑡𝑡)𝑥𝑖1(𝑡𝑡)+. . +𝛽𝑝(𝑡𝑡)𝑥𝑖𝑝(𝑡𝑡), 

where 𝛽0(𝑡𝑡) is the baseline hazard function and 𝛽𝑗(𝑡𝑡) (𝑗 = 1, . . , 𝑝) are arbitrary 

regression functions which measure the effect of the respective covariates [37]. This 

model allows the effect of the covariates to change over time.  In their book, Aalen et al. 

[37] provide several arguments for the use of this model over the standard Cox PH 

model. Amongst them are that the hazard ratio as calculated in the Cox PH model might 

not be a good measure of the effect when the risk factor is rare (risk differences may be 

better suited), time-dependent covariates are easily incorporated, the model is not 

vulnerable to neglected covariates, and it may be well suited for analysing excess 

hazard because the model is not forced to give positive estimates as are proportional 
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hazards models. Despite the obvious advantages, Aalen’s additive model is not often 

used. One of the reasons may be that the regression coefficients are more difficult to 

estimate and interpret when compared with regression coefficients from the Cox PH 

model [38]. 

2.4 Multiple events  

In traditional survival analysis, the outcome of interest is the time to occurrence of a 

single event. Event history analysis is concerned with the occurrence of multiple events 

over time for an individual. These data have a sequential structure where a subject may 

experience repeated events of the same type and/or events of different types over time. 

The most commonly applied models in medical research for analysing these types of 

data are marginal [39, 40], conditional [41, 42], shared frailty [43] and multi-state 

models. For marginal and conditional models the dependence either within individuals 

in a group or within an individual for recurrent events is accounted for by a robust 

variance estimator, whereas for shared frailty models the dependence is accounted for 

by a random effect variable. In multi-state models, the events are seen as a stochastic 

process describing movements among a finite number of states. The application of these 

models to multiple event data are described in monographs by, for example, Hougaard 

[27] and Therneau and Grambsh [44].  

The advantage of using multi-state models on survival data is that they easily 

incorporate time-dependent covariates as transient states, extend from single to multiple 

event survival analysis and account for left truncation. Multi-state models have been 

used considerably in analysing data from bone marrow transplant studies [45], and 

increasingly in cancer studies. In other fields of medical research they are not 

commonly used despite a rich literature on the theory and their advantages (see for 

example [27, 37, 46, 47]). One important reason why multi-state models have not been 

applied more often to survival data in the past may be the lack of available software to 

implement these models [48], although as this becomes increasingly available, the 
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adoption of his approach is likely to increase. The next section provides a background 

on the multi-state modelling approach. 

2.4.1 Multi-state models  

Time to event data can be modelled as a multi-state stochastic process where an 

individual occupies a state and moves between states described by the events, that is, 

when an event occurs the individual changes state (unless prevented by right censoring). 

States are considered transient, if movement out of them is allowed, or absorbing, if no 

movement out is allowed. The structure of a multi-state model is often illustrated in 

diagrams where boxes represent states and arrows represent possible events [48-51].  

Considering survival analysis with a single outcome as a multi-state model, an 

individual can move from a starting state to the outcome state, for example from 

receiving a hip arthroplasty to having a revision of the arthroplasty (Figure 2.1). 

Another simple example in the context of competing risks concerns individuals who can 

move from a starting state into 𝑘 different absorbing states (see for instance Figure 2.2 

where 𝑘 = 2). In this model the transient state is insertion of an arthroplasty, and dead 

and revision are considered absorbing states (revision is an absorbing state because time 

to revision is the outcome of interest). A more complex multi-state model is illustrated 

in Figure 2.3 which includes three transient states (insertion of an arthroplasty, revision 

of this arthroplasty and receiving a second arthroplasty) and one absorbing state (dead).  

 
Figure 2.1: Traditional survival model with one event of interest and hazard rate 

 𝝀(𝒕). 

0 
Insertion of 
arthroplasty 

1 
Revision of 
arthroplasty 

𝜆𝜆(𝑡𝑡) 
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Figure 2.2: Competing risks model with two absorbing states and cause specific 

hazards 𝝀𝟏(𝒕) and 𝝀𝟐(𝒕).  

 

 

Figure 2.3: Multi-state model with three transient states, one absorbing state 

(dead) and transition intensities 𝝀𝒈𝒉(𝒕) from state 𝒈 to state 𝒉, where 𝒈 = 𝟎, 𝟏, 𝟐 

and 𝒉 = 𝟏, 𝟐, 𝟑. 
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The movements between states are called transitions. The instantaneous rate of moving 

from state 𝑔 to state ℎ given that the individual is in state 𝑔 just before time 𝑡𝑡 is called 

the transition intensity, 𝜆𝜆𝑔ℎ(𝑡𝑡). This is equivalent to the hazard rate in traditional 

survival analysis with a single event. The transition probability, 𝑃𝑔ℎ(𝑠, 𝑡𝑡), is the 

probability of moving from state 𝑔 to ℎ. The state occupation probability, 𝑃ℎ(𝑡𝑡) is the 

probability that an individual is in state ℎ at time 𝑡𝑡. When all individuals start in state 0 

at 𝑡𝑡 = 0, the state occupation probability is the same as the transition probability, 

𝑃0ℎ(0, 𝑡𝑡) [37, 49]. If the process is Markovian, the transition probabilities can be 

calculated directly from the transition intensities, for example by using the Aalen-

Johansen estimator [52]. A Markov chain is a process that has the Markov property: the 

future state depends only on the present state and not any past states. Hence, a Markov 

model is assumed to be independent of time spent in the current state, if not it is called a 

semi-Markov model. Further, a Markov model is considered time homogenous if the 

hazards do not depend on the time (because it is constant), and if it does it is non-

homogenous [48]. In order to investigate if the process is Markovian, a function of 

current state duration can be included as a time dependent covariate in a Cox PH model 

(using time since the start of the process as baseline time variable) and testing if the 

estimated regression coefficient is equal to zero [52]. Datta and Sattten [53] showed that 

the Aalen-Johansen estimator is valid for estimating state occupation probabilities also 

in non-Markov models if censoring is independent of state occupied and censoring 

times. Gunnes et al. [54] showed that the Aalen-Johansen estimator may be valid for 

less stringent censoring assumptions (i.e. where censoring is allowed to depend on the 

past) in certain circumstances, such as for small sample sizes. 

2.4.2 Competing risks  

In survival analysis a competing risks model describes a situation where the occurrence 

of the event of interest may be precluded by another event, or the risk of the event of 

interest may be altered by the occurrence of another event [55]. This situation is 

sometimes (inappropriately) approached by ignoring the competing risks and treating 

them as censoring events when estimating the survival probability for the event of 
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interest. In this case the assumption of independence of the time to event and the 

censoring distribution is violated, often leading to a biased Kaplan-Meier estimate and 

an underestimation of the survival probability. This concept is well illustrated in Putter 

et al.’s article [51]. 

There are two mathematical approaches to modelling competing risks: either to model 

the lifetime as a multivariate random variable or as a multi-state model. The classic 

competing risks approach is the former: to model the competing risks as parallel latent 

failure times where there are several potential failure times for each individual. The 

assumption is that the latent times to failure are independent and that the first failure 

time determines the whole system failure [56].The interpretation of the latent failure 

time is problematic. For example, it is speculative to assume that if a subject does not 

die from the first cause this will not alter the risk of dying from another cause (which 

obviously cannot be observed) [27]. This problem was first contemplated in a paper by 

Bernoulli in 1766 where competing risks were introduced in the context of vaccination 

for smallpox, see Dietz et al. [57].  

The other approach which is increasingly being advocated [49] is to model the 

competing risks using a multi-state model where subjects pass from an initial state to 

one of several absorbing states (see for instance Figure 2.2 for 𝑘 = 2). The transition 

intensity for moving to one of these states, the instantaneous rate, 𝜆𝜆ℎ(𝑡𝑡), is called the 

cause specific hazard rate. The process is Markovian. No assumption is made about 

independence of failure times but all hazard functions for leaving a state have to be 

interpreted in the full model [27]. The transition probabilities are known as the 

cumulative incidences [58]. The cumulative incidence function (CIF) for event type h 

is: 

𝐹ℎ(𝑡𝑡) = 𝑃𝑟(𝑇 ≤ 𝑡𝑡, 𝜀 = ℎ) = ∫ 𝜆𝜆ℎ(𝑠)𝑆(𝑠)𝑠=𝑡
𝑠=0 𝑑𝑠, 

which can be estimated by the Aalen-Johansen estimator [22, 59]: 
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𝐹�ℎ(𝑡𝑡) = �
𝑑ℎ𝑗
𝑛𝑗

𝑆̂
𝑡𝑗≤𝑡

�𝑡𝑡𝑗−1�, 𝑤𝑖𝑡𝑡ℎ 𝑡𝑡1 < 𝑡𝑡2 <. . 𝑡𝑡𝑟  

where 𝑆̂�𝑡𝑡𝑗−1� is the Kaplan-Meier estimator of the survival function considering all 

events, that is, the probability of being event free prior to 𝑡𝑡ℎ𝑗,  𝑑ℎ𝑗 𝑛𝑗⁄  is the Nelson-

Aalen estimator of the cumulative hazard of failure type ℎ where 𝑛𝑗 is number at risk at 

𝑡𝑡𝑗 and 𝑑ℎ𝑗 is the number of events of type ℎ that occur at 𝑡𝑡𝑗.  

2.4.3 Regression models for competing risks  

Estimation of the effect of covariates on the cause specific hazard is often based on a 

Cox PH model. For example Kalbfleisch and Prentice [30] developed a method where 

each failure type is modelled separately and the other failure types are censored. Lunn 

and McNeil [60] developed a model with two versions referred to as method A and 

method B. In both versions the data are augmented 𝑘 (failure type) times and a Cox PH 

model is fitted, method A unstratified and method B stratified. Tai et al. [61] compared 

four different approaches to analysing competing risks data and developed an extension 

of the Lunn and McNeil method. However, since the effect of a covariate on the cause 

specific hazard might be different to the effect on the cumulative incidence function 

[28, 62], much research has centred on developing regression models for the cumulative 

incidence function. Klein and Andersen [63] developed a regression method which is 

based on creating jack-knife pseudo values for the estimate of the cumulative incidence 

function at specified time points. The obtained pseudo values are then used in 

generalized estimating equations (GEEs) to model the effect of covariates on the 

outcome of interest. For the method to work, it is assumed that right censoring is 

independent on both the multi-state process and of the covariates [64].  

The most frequently used method for regression of the cumulative incidence function 

was developed by Fine and Gray [21]. The model is based on the subdistribution hazard 

formulated by Gray [65]. For failure from cause 1, i.e. 𝜀 = 1, this is:  
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𝜆𝜆1∗(𝑡𝑡) = lim
Δ𝑡→0

1
∆𝑡𝑡
𝑃{𝑡𝑡 ≤ 𝑇 < 𝑡𝑡 + ∆𝑡𝑡, 𝜀 = 1|𝑇 ≥ 𝑡𝑡 ∪ (𝑇 ≤ 𝑡𝑡 ∩ 𝜀 ≠ 1)} 

= −
d 𝑙𝑜𝑔{1 − 𝐹1(𝑡𝑡)}

d𝑡𝑡
, 

where 𝐹1(𝑡𝑡) is the cumulative incidence function for the failure from cause 1. The risk 

set associated with the subdistribution hazard consists of individuals who have not 

experienced the event by time 𝑡𝑡 as well as individuals who have experienced the 

competing event. The cumulative incidence function and the subdistribution hazard are 

directly related as in survival analysis with a single event, with: 

𝐹1(t)=1-exp �−� 𝜆𝜆1∗(s)𝑑s
s=t

s=0
�. 

The Fine and Gray is similar to the Cox PH model in that it is a proportional hazards 

model of the subdistribution hazard where the effect of the covariates is linear on a 

complementary log-log transformed cumulative incidence function, i.e. 

𝜆𝜆∗(𝑡𝑡) = 𝜆𝜆0∗(𝑡𝑡) exp(𝜷𝑇𝑿), 

where  𝜆𝜆∗(𝑡𝑡)  is the hazard of the subdistribution and 𝜆𝜆0∗(𝑡𝑡) denotes  the subdistribution 

baseline hazard function. As in the Cox PH model the subdistribution baseline hazard 

function is left unspecified and the subdistribution hazard ratio is: 

𝐻𝐻𝑅𝑅𝑠𝑢𝑏 = exp{𝛃𝐓(𝐗𝟏 − 𝐗𝟎)}, 

comparing subjects with covariate values 𝑿𝟏 relative to those with 𝑿𝟎. The model can 

be used to make predictions of the cumulative incidence function adjusted for 

covariates. However, because of the definition of the risk set, the subdistribution hazard 

ratios do not have a direct interpretation unlike the hazard ratios from the Cox PH 

model [28]. This fact is sometimes not appreciated by researchers, see e.g. [66-68]. The 

Fine and Gray model has become very popular, partly because of its similarity to the 

Cox PH model. Further, because commands for implementing the model are now 
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available in common software programs such as Stata and in R, its use will likely 

continue to increase. The model and its application to arthroplasty registry data are 

discussed further in Chapter 5. 

An overview of the above and other competing risks regression models is provided by 

Zhang et al. [69] and more recently by Haller et al.[70]. 

2.5 Analysis of joint replacement registry data  

A number of joint replacement registries have been established worldwide. Results from 

the analysis of registry data are typically presented in annual reports and publications in 

journals [71, 72]. 

Data in joint replacement registries are traditionally analysed with survival methods 

where the outcome of the analysis is ‘time to revision’, that is, the time interval between 

the operation date of insertion of the prosthesis and the operation date of revision. 

Revision is the main indicator of failure of a joint replacement. It is a crude measure of 

failure as it depends on many factors such as the health of the patient, waiting lists, the 

surgeon threshold for operation etc., but in its favour it is an unambiguous outcome 

[73]. The survival function is commonly estimated with the Kaplan-Meier method and 

results are presented in figures and tables [13, 74]. Patients are censored either 

administratively (at the end of each year) or because of death. Groups are compared 

with log-rank tests. Revision rates of different prostheses are compared using the Cox 

PH model, adjusting for covariates such as age and sex [75].  

This approach to analysis is followed for example by the Nordic countries’ arthroplasty 

registries and the Australian registry. The National Joint Registry (NJR) in the United 

Kingdom use a flexible parametric model [76] to model the hazard rates of revision, 

thereby obtaining both absolute and relative risks. An extension of the model is also 

used to estimate the cumulative incidence function and the effect of covariates in the 

presence of the competing risk of death [77]. 
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Several registries compare risk of revision between different types of prostheses using 

revision rate per 100 or 1000 component years [78]. This method adjusts for the 

different lengths of time the prostheses have been at risk of failure, but it does not 

provide information on how the risk of revision may change over time.  

When data in the AOA NJRR are analysed, proportionality in the Cox PH model is 

checked and, if evidence of a time varying effect is found, time points are chosen 

iteratively for calculating hazard ratios for each selected time period. 

As the main outcome of interest in analysis of joint replacement data is failure of the 

prosthesis, data are analysed at the prosthesis-level. The consequence is that a patient 

who has several joint replacements may appear several times in the same analysis. For 

the purpose of data management and linkage, the NJR have restructured their data from 

procedure-level to person-level, but the data are analysed at procedure-level. With 

increasing amounts of data in joint replacement registries, the system for data 

management will become increasingly important. 

 

This Chapter has provided an introduction to time to event analysis. The relevant 

literature has been reviewed and some issues related to the analysis of event histories 

have been discussed. In Chapters 4 to 7, these issues are considered in more detail, 

specifically with respect to the analysis of joint replacement registry data. 
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3  DATA SOURCES 

Arthroplasty is surgical reconstruction or replacement of a joint. In this thesis, 

arthroplasty means joint replacement surgery. In addition to collecting data on hip and 

knee replacements, some arthroplasty registries also collect data on replacements of 

other joints such as elbow, shoulder, ankle and fingers. This thesis considers only data 

on hip and knee replacements, but the statistical methods discussed are applicable to 

data on other types of joint replacements.  

There are two main categories of hip replacement, total hip replacement and partial hip 

replacement. In the former, the articular surfaces of both the acetabulum and femur are 

replaced. The main indication for this procedure is symptomatic osteoarthritis. In partial 

hip replacement (hemiarthroplasty) only the femoral component is replaced. This 

procedure is mainly performed as treatment for fractured neck of femur.  

The main categories of knee replacements are partial and total knee replacements. In 

partial knee replacements only parts of the femur and/or tibia articular surface are 

replaced whereas in total knee replacement the entire femorotibial articulation is 

replaced with a single femoral and a single tibial prosthesis. Again, the main indication 

is symptomatic osteoarthritis. 

In the following I provide a short description of the two registries used as data sources 

for this thesis, the Australian Orthopaedic Association National Joint Replacement 

Registry and the Norwegian Arthroplasty Register.  

3.1 The Australian Orthopaedic Association National Joint 
Replacement Registry  

The Australian Orthopaedic Association National Joint Replacement Registry (AOA 

NJRR) was established and began data collection in 1999, but was not fully national 

until 2003. The need to establish a joint replacement registry in Australia was inspired 
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by the success of the Swedish Knee Arthroplasty Registry in improving standards and 

reducing costs of joint replacement surgery. The purpose of the AOA NJRR is to 

“define, improve and maintain the quality of care for individuals receiving joint 

replacement surgery”[13].  

The AOA NJRR is owned by the Australian Orthopaedic Association and its technical 

support is provided by the Data Management & Analysis Centre (DMAC), University 

of Adelaide. Until 2008, the AOA NJRR was only collecting data on hip and knee 

replacements, but since then data on other joints (shoulder, elbow, ankle, etc.) 

replacements have been included. Data are recorded on both primary procedures and 

revisions. The Registry now (as of December 2012) has data on more than 700,000 

procedures. Almost 100% of hip and knee procedures performed in Australia are 

reported. The amount of data recorded for each procedure is relatively small, which 

contributes to good compliance and reporting. The AOA NJRR obtain mortality data on 

patients who have received joint replacements (which are necessary for the appropriate 

analysis of the data) from the National Death Index, a data base maintained by the 

Australian Institute of Health and Welfare.  

Information from the analysis of the Registry data is disseminated through annual and 

supplementary reports. There is an online facility where surgeons can access their 

individual data and for prosthesis companies and regulatory bodies to monitor 

prostheses. 

Up until 31 December 2011, 332,351 hip procedures in 273,534 individual patients 

were recorded in the AOA NJRR. Approximately 12% of these procedures were 

revisions and 16% of the primary hip procedures were partial. Of 36,503 bilateral hip 

procedures, 4.6 % of patients had both hips operated upon the same day and 20% 

between 1 day and 6 months. The number of patients who received a hip replacement 

and have since died is 57,586 (21.1%). 

For knee procedures, 380,726 were reported in 285,474 individual patients, 8% of 

which were revisions. The number of bilateral knee procedures was 72,788, 22.5% of 
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patients had both knees operated upon the same day and 13% performed between 1 day 

and 6 months. The number of patients who received a knee replacement and have since 

died is 27,597 (9.7%)[13]. 

3.2 The Norwegian Arthroplasty Register  

The Norwegian Hip Arthroplasty Register (NAR) was established in 1987 in response 

to high failure rates of some prostheses that had been introduced to the market without 

prior clinical studies [79]. In 1994 it was extended to register all types of joint 

replacements performed in Norway. The main purpose of the NAR is to “function as a 

surveillance tool to identify inferior implants as early as possible”[80].  

The NAR has excellent coverage. It has been reported that the NAR registered 97% of 

hip arthroplasties patient recorded in the Norwegian Patient Register 1999-2002 [81, 

82]. The data are linked through patients’ national social security number to the 

Norwegian Population Register so that information about emigration and death are 

obtained when the NAR data base is updated. 

The 2012 annual report [74] includes 162,971 hip procedures performed between 1987 

and 2012; approximately 14% of these were revision procedures. In 2011, 7,360 

primary hip procedures were performed. In the period 1994 to 2012, 51,337 knee 

procedures were recorded, 8% of these were revision procedures. In 2011, 4,526 

primary knee procedures were performed. 

3.3 Ethical considerations  

The AOA NJRR is a Declared Federal Quality Assurance Activity and is required by 

law to abide by certain specified requirements, for example, protect information that 

identifies individuals in the AOA NJRR. It has been subjected to ethics approval. The 

AOA NJRR only releases de-identified data. The data released for this project had the 

patients' identifiers removed. Further, there were no other characteristics in the data 

used in this thesis from which to identify any particular patient or surgeon. 
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Prior to undergoing their arthroplasty patients are informed about the AOA NJRR and 

informed that they may 'opt-off', that is, choose not to be included in the Registry 

database. They are given a phone number to ring for further information.  Surgeons are 

not identified on the database unless they choose to be. 

The data obtained from the NAR are also de-identified. The NAR obtains permission 

from each patient to collect information on their procedure. 
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4 COMPETING RISKS SURVIVAL ANALYSIS APPLIED 
TO DATA FROM THE AUSTRALIAN ORTHOPAEDIC 
ASSOCIATION NATIONAL JOINT REPLACEMENT 
REGISTRY 

4.1 Preface  

This chapter contains the first of four articles that contribute to this thesis. The article 

has been published in Acta Orthopaedica [83]. It investigates the use of the Kaplan 

Meier (KM) method and the Cumulative Incidence Function (CIF) in the analysis of 

arthroplasty registry data. The aim of the study was to compare the estimates of risk of 

revision from the two methods while treating death as a competing risk. The purpose 

was to demonstrate the degree to which the risk of revision is biased using the KM 

method, compared to estimates using competing risks methods, on subsets of data from 

the AOA NJRR with different incidences of the competing risk death. 

The article also explains the problems associated with using the KM method in 

competing risks scenarios and reasons why KM estimates are often biased.  

Of note is that the competing risks model is equivalent to a simple multi-state model 

with two or more absorbing states and one transient state. Multi-state models with a 

more complex structure are described in Chapters 6 and 7. 

4.2 Statement of Authorship 
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Marianne H Gillam 1, Philip Ryan, Stephen E Graves, Lisa N Miller, Richard N de 

Steiger, and Amy Salter (2010) Competing risks survival analysis applied to data 

from the Australian Orthopaedic Association National Joint Replacement Registry. 

Acta Orthopaedica, v. 81 (5), pp. 548-555, October 2010 
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4.4 Additional Discussion  

The data in the published article were obtained from the AOA NJRR. The Australian 

registry achieved full national coverage in 2002 and at the time of analysis the data 

consisted of records covering a 7-year period. In the discussion in the article, it was 

pointed out that scope for further research would entail applying competing risks methods 

to data with a much longer follow-up time. 

The same analysis was subsequently performed on data from the Norwegian Arthroplasty 

Register (NAR) which has records on hip replacements in Norway from 1987. The data 

consist of 78,102 first recorded hip arthroplasties in patients who received THA for OA 

from 1987 to 2010. As in the published article, results were compared for patients younger 

than 70 years with those from patients who were 70 years or older. These results are 

presented in Table 4.5 and Figures 4.8 and 4.9 below. The KM and CIF estimates, 

differences and relative differences are similar to the estimates based on the Australian 

data at 1 year and at 5 years (Table 4.4). Because mortality in this group of patients was 

relatively low for the first 5 years after receiving the arthroplasty, there was little 

difference between the KM and CIF estimates of risk of revision at these time points. 

However, with increasing mortality over time with increasing age of the patients, it is 

evident that the KM method eventually overestimates the risk of revisions to a substantial 

degree in this group, as was the case in the group of patients from the AOA NJRR who 

received arthroplasty for fractured neck of femur. For example, after 20 years the relative 

difference in the youngest age group was 21.5% whereas in the oldest age group it was 

68.9% (Table 4.5). Because CIF estimates of the risk of the event of interest should be 

interpreted in conjunction with estimates of the competing event(s), the figures for the 

estimates of risk of death over the period are also presented (Figure 4.9). The CIF 

estimates are somewhat lower than the KM estimates for the risk of death and represents 

estimates of the risk of death over time without first having had a revision. When revision 

is not considered a competing event to death, which is most commonly the case, the KM 

estimates are the appropriate estimates of risk of death at specific points in time. The 
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results demonstrate that even in a population with relative low mortality such as 

individuals who have received THA for OA [101], accounting for competing risks is 

important in analysis with long follow-up time. 

 

Table 4.5: Data from the Norwegian Arthroplasty Register. Percent estimates (with 

95% confidence interval) of revision in patients with osteoarthritis who underwent 

total hip replacement – by age group. 

  1 Yr 5 Yrs 10 Yrs 15 Yrs 20 Yrs 

Age < 70 years    

 At risk 31,634 22,010 12,211 5,413 1,549 

 KM a 0.8 (0.7-0.9) 4.2 (4.0-4.5) 10.8 (10.4-11.3) 19.0 (18.3-19.7) 25.3 (24.3-26.3) 

 CIF b 0.8 (0.7-0.9) 4.2 (3.9-4.4) 10.2 (9.8-10.6) 16.8 (16.2-17.3) 20.8 (20.1-21.5) 

 Diff c 0.002 0.08 0.62 2.21 4.47 

 RD d 0.2% 1.9% 6.2% 13.2% 21.5% 

Age ≥70 years    

 At risk 40,398 27,552 12,243 3,573 514 

 KM 1.0 (0.9-1.1) 3.4 (3.2-3.6) 6.3 (6.0-6.5) 9.2 (8.8-9.8) 12.1 (11.1-13.2) 

 CIF 1.0 (0.9-1.0) 3.2 (3.1-3.4) 5.3 (5.1-5.5) 6.6 (6.3-6.9) 7.2 (6.9-7.5) 

 diff 0.01 0.2 0.94 2.64 4.95 

 RD 0.9% 5.7% 17.7% 39.9% 68.9% 
a Kaplan-Meier estimate of Cumulative Percent Revised. 
b Cumulative Incidence Function. 
c Difference (bias of the KM estimate).  
d Relative Difference (bias of KM estimate relative to the CIF). 
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Figure 4.8: Estimates of revision by age group in patients with OA and THA (data 

from the NAR) 

 
Figure 4.9: Estimates of death by age group in patients with OA and THA (data from 

the NAR) 
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5 DIFFERENT COMPETING RISKS MODELS APPLIED 
TO DATA FROM THE AUSTRALIAN ORTHOPAEDIC 
ASSOCIATION NATIONAL JOINT REPLACEMENT 
REGISTRY 

5.1 Preface  

In the previous chapter, non-parametric methods for estimating the risk of revision in 

the presence of the competing risk of death were compared. It was shown that when the 

risk of death was high, the KM method substantially overestimated the risk of revision 

compared to estimates using competing risks methods, and that the bias increased with 

time as the incidence of the competing risk of death increased.  

This chapter deals with estimating the effect of covariates on the hazard rate and on the 

risk of revision and death. The hazard rate of revision is the instantaneous risk of 

revision at any given time whereas the risk of revision, as estimated by the CIF, is the 

accumulated risk before a certain time. Since the latter estimates depend on the hazard 

rates of both death and revision, the effects of covariates on the rate and risk of revision 

may differ.  

In the following article, which has been published in Acta Orthopaedica [102], the aim 

was to examine the use of different models in analysing arthroplasty registry data in the 

presence of competing risks. It illustrates the use of methods for assessing the effect of 

covariates on the revision rate and methods for assessing the effect on the risk of 

revision. Methods for handling covariates with time dependent effects are also 

addressed, and guidance is provided on how to interpret estimates from competing risks 

analysis. 
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5.4 Additional discussion 

In tra ditional s urvival analysis with a  s ingle out come there i s a  one -to-one 

correspondence between the hazard rate and the survival function so that the effect of 

covariates as estimated by the Cox PH model corresponds directly to the effect on the 

survival f unction [22]. T he previous a rticle demonstrates t hat in c ompeting r isks 

scenarios the effect of covariates on the risk of revision may be different to the effect on 

the hazard rate of  revision. This i s evident for example when comparing the e ffect of 

sex o n revision: m ales h ad a  si gnificantly h igher h azard o f r evision t han f emales 

whereas there was no evidence of a d ifference between the sexes in the actual r isk of 

revision. In a c ompeting risks s cenario w ith one e vent of i nterest a nd one  c ompeting 

event and with cau se specific h azards 𝜆𝜆1(𝑡𝑡) and 𝜆𝜆2(𝑡𝑡) respectively, th e r elationship 

between 𝜆𝜆1(𝑡𝑡) and t he s ubdistribution ha zard 𝜆𝜆1∗(𝑡𝑡) for th e e vent o f in terest is  [121, 

122]: 

𝜆𝜆1(𝑡𝑡) = �1 +
𝑃(𝑇 ≤ 𝑡𝑡, 𝜀 = 2)

𝑃(𝑇 > 𝑡𝑡)
� × 𝜆𝜆1∗(𝑡𝑡) = �1 +

𝐹2(𝑡𝑡)
𝑃(𝑇 > 𝑡𝑡)�

× 𝜆𝜆1∗(𝑡𝑡), 

where 𝐹2(𝑡𝑡) is the CIF of the competing event and  
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P(𝑇 > 𝑡𝑡)=exp�−� 𝜆𝜆1(𝑠)+𝜆𝜆2(𝑠)𝑑𝑠
𝑠=𝑡

𝑠=0
� 

Proportionality of either the Cox PH model or the Fine and Gray model does not imply 

proportionality of the other. However, even if the model for the subdistribution hazard 

is misspecified, it may still be useful for estimating average effects of covariates on the 

CIF [123, 124]. 

The relationship between the hazard ratios (HRs) from the Cox PH model and the Fine 

and Gray model are described by Lau et al. [109]. Table 5.3 shows how the HR of the 

event of interest relates to the subdistribution HR in a scenario with one competing risk. 

For example, if the HRs indicate a decreasing effect of a covariate (HR < 1) on the 

cause specific hazards for both the event of interest and the competing event, the 

subdistribution HR will be larger than the cause specific HR for this event (Table 5.3). 

In general, it appears that if a covariate influences both cause specific hazards in the 

same direction, it can potentially result in the covariate having an opposite effect on the 

hazard rate to the actual risk of an event. See also articles by Allignol et al. and Dignam 

et al. [125, 126]. 

The relationship between the cause specific hazards and the subdistribution hazard is 

further complicated in that the numerical values of the subdistribution HRs cannot be 

interpreted quantitatively, unlike HRs obtained from Cox PH models, but only as 

qualitative relative effects on the CIF [22]. This is because the risk set associated with 

the subdistribution hazard for the event of interest at any time consists of individuals 

who have not experienced any event in addition to individuals who have experienced 

the competing event(s) [21].  

Table 5.4 provides results from a stratified Cox PH model and the modified Fine and 

Gray model applied to the registry data from the AOA NJRR in the previous article 

(Table 5.4 is similar to Table 5.2 in the article except that it also includes HRs for 

death). The results in table 5.4 are consistent with the relationship between the cause 

specific HRs and the subHRs as described in Table 5.3 below. 
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Table 5.3: Relationship between HRs and subHRs, modified from Lau et al. [109] 

𝐇𝐑𝟏 𝐇𝐑𝟐  

< 1 < 1 subHR1 > HR1 

< 1 > 1 subHR1 < HR1 

> 1 < 1 subHR1 > HR1 

> 1 > 1 subHR1 < HR1 

𝐻𝐻𝑅𝑅1 and  𝐻𝐻𝑅𝑅2: cause specific hazard ratios for event of interest and competing event 

respectively. 𝑠𝑢𝑏𝐻𝐻𝑅𝑅1: subdistribution hazard ratio for event of interest. 
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Table 5.4: Cause specific hazard ratios (HRs) and subdistribution hazard ratios (subHRs) for different covariate for a stratified Cox 

PH model and a modified Fine and Gray model respectively. 

Models Cox PH    Modified Fine and Gray  

Event type Revision  Death  Revision  

 HR (95% CI) P HR (95% CI) P subHR (95% CI) P 

Age: young vs. olda 1.28 (1.05, 1.56) 0.01 0.81 (0.77, 0.86) <0.001 1.36 (1.10, 1.67) 0.004 

Male vs. femaleb 1.37 (1.10, 1.70) 0.005 1.94 (1.83, 2.05) <0.001 1.94 (0.83, 1.31) 0.73 

Fixation type stratified - stratified - time dependent - 

Monoblock vs. bipolarb 1.45 (1.09, 1.94) 0.01 1.85 (1.71, 1.99) <0.001 1.30 (0.97, 1.74) 0.08 

Unipolar vs. bipolarc  1.38 (1.02, 1.88) 0.04 1.04 (0.96, 1.14) 0.36 1.44 (1.04, 1.98) 0.03 

Unipolar vs. monoblockd 0.95 (0.74, 1.23) 0.71 0.56 (0.52, 0.61) <0.001 1.11 (0.85, 1.45) 0.46 
a𝐻𝐻𝑅𝑅𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 > 1 and 𝐻𝐻𝑅𝑅𝑑𝑒𝑎𝑡ℎ < 1 HR, 𝑠𝑢𝑏𝐻𝐻𝑅𝑅𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 > 𝐻𝐻𝑅𝑅𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛  

b𝐻𝐻𝑅𝑅𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 > 1 and 𝐻𝐻𝑅𝑅𝑑𝑒𝑎𝑡ℎ > 1 HR,  𝑠𝑢𝑏𝐻𝐻𝑅𝑅𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 < 𝐻𝐻𝑅𝑅𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛  

c𝐻𝐻𝑅𝑅𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 > 1 and 𝐻𝐻𝑅𝑅𝑑𝑒𝑎𝑡ℎ ≈ 1 HR, 𝑠𝑢𝑏𝐻𝐻𝑅𝑅𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 > 𝐻𝐻𝑅𝑅𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛  

d𝐻𝐻𝑅𝑅𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 < 1 and 𝐻𝐻𝑅𝑅𝑑𝑒𝑎𝑡ℎ < 1 HR,  𝑠𝑢𝑏𝐻𝐻𝑅𝑅𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 > 𝐻𝐻𝑅𝑅𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛  
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6 MULTI-STATE MODELS AND ARTHROPLASTY 
HISTORIES AFTER UNILATERAL TOTAL HIP 
ARTHROPLASTIES  

Introducing the Summary Notation for Arthroplasty Histories 

6.1 Preface 

In the two previous chapters methods for analysing arthroplasty registry data in the 

presence of competing risks have been applied and discussed. The competing risks 

model is an example of a simple multi-state model with two or more absorbing states. 

In more complex multi-state models individuals can move into a finite number of 

different transient states before reaching absorbing states. 

With a well documented increasing proportion of elderly people in the population and 

an increasing incidence of joint replacements in the population, progressively more 

individuals are expected to experience several joint procedures during their lifetime. 

The following article, which has been published in Acta Orthopaedica [127] with 

supplementary article data, investigates the use and suitability of multi-state modelling 

techniques in analysing data on complex arthroplasty histories. The aim of this article 

was to develop a model that could be used to describe arthroplasty histories and 

estimate transition intensities and probabilities associated with multiple joint procedures 

in an individual. 

As joint replacement registries grow larger over time, management of the resultant data 

becomes increasingly complex. Joint replacement registries record each primary joint 

replacement with associated revisions, such that each individual may be recorded 

several times. Another aim of this article was to develop a notation that would enable 

identification and management of the complete arthroplasty history of each individual.  
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7 THE PROGRESSION OF END-STAGE 
OSTEOARTHRITIS: ANALYSIS OF DATA FROM THE 
AUSTRALIAN AND NORWEGIAN JOINT 
REPLACEMENT REGISTRIES USING A MULTI-
STATE MODEL 

7.1 Preface  

In Chapter 6 the use of a multi-state model for analysing the rates and probabilities of 

revision and receiving a second arthroplasty was investigated. The Summary Notation 

for Arthroplasty Histories, SNAH, was developed as a tool to manage data in 

arthroplasty registries on patients with multiple joint procedures and also to facilitate 

multi-state modelling. This chapter contains an article which has been accepted (16th 

December 2012) for publication in Osteoarthritis and Cartilage [135] where rather than 

focussing on revision of prostheses, a multi-state modelling technique is applied to the 

investigation of progression of osteoarthritis. Osteoarthritis is a common chronic disease 

and the pathogenesis is not clear. Symptomatic osteoarthritis is by far the most common 

indication for joint replacement surgery. The article investigates the progression of 

osteoarthritis using joint replacements as an indicator of the incidence of symptomatic 

osteoarthritis. The aim of the article was to determine if evidence of a pattern in the 

progression of osteoarthritis in large weight bearing joints could be found in 

independent data from two large national joint replacement registries. 

 

7.2 Statement of Authorship  
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7.3 Article  

7.3.1 Abstract  

Objective: The incidence of joint replacements is considered an indicator of 

symptomatic end-stage osteoarthritis (OA). We analysed data from two national joint 

replacement registries in order to investigate whether evidence of a pattern of 

progression of end-stage hip and knee OA could be found in data from large unselected 

populations. 

Design: We obtained data on 78,634 hip and 122,096 knee arthroplasties from the 

Australian Orthopaedic Association National Joint Replacement Registry and 19,786 

hip and 12,082 knee arthroplasties from the Norwegian Arthroplasty Register. A multi-

state model was developed where individuals were followed from their first recorded 

hip or knee arthroplasty for OA to receiving subsequent hip and/or knee arthroplasties. 

We used this model to estimate relative hazard rates and probabilities for each registry 

separately. 

Results: The hazard rates of receiving subsequent arthroplasties in non-cognate joints 

were higher on the contralateral side than on the ipsilateral side to the index 

arthroplasty, especially if the index was a hip arthroplasty. After 5 years, the estimated 

probabilities of having received a knee contralateral to the index hip were more than 1.7 

times the probabilities of having received a knee ipsilateral to the index hip. 

Conclusion: The results indicate that there is an association between the side of the first 

hip arthroplasty and side of subsequent knee arthroplasties. Further studies are needed 

to investigate whether increased risk of receiving an arthroplasty in the contralateral 

knee is related to having a hip arthroplasty and/or preoperative factors such as pain and 

altered gait associated with hip OA. 



 

102 

 

7.3.2 Introduction  

Osteoarthritis (OA) is a common chronic disease, leading to chronic pain, decreased 

quality of life and disability [136]. OA often involves multiple joints and the greatest 

disability is caused by hip and knee OA [137] for which joint replacement is often a 

successful treatment. The pathogenesis of OA is not clear. It is thought to be a 

combination of genetic factors, systemic risk factors and biomechanical factors [138-

140]. The sequence of progression of OA to different joints can inform the 

understanding of the pathogenesis of OA. The incidence of joint replacements is 

considered by many an indicator of symptomatic end-stage OA [129, 141, 142], hence 

the progression of joint replacements in individuals is an indicator of the progression of 

end-stage OA. Evidence suggests that the pattern of progression of end-stage OA in 

large weight bearing joints is not a random process. For example, Shakoor et al. [129] 

found that a greater proportion of individuals who had received total hip arthroplasty 

(THA) or total knee arthroplasty (TKA) for OA, received their second arthroplasty in 

the cognate contralateral joint. Of those individuals who had received a unilateral THA 

followed by a TKA, a higher proportion received an arthroplasty in the contralateral 

knee than in the ipsilateral knee. This was in contrast to individuals with rheumatoid 

arthritis, where there was no difference between the sides of TKA following a THA. 

Using joint replacements as an indicator of symptomatic end-stage OA, data from 

population-based arthroplasty registries can provide information on the  progression of  

end-stage OA in large weight bearing joints. The objective of this study was to 

investigate whether evidence of a pattern of progression of joint replacements in large 

weight bearing joints could be found in independent data from two large national joint 

replacement registries using a multi-state model for each registry separately. The study 

hypothesis was that there is an association between the side of the first hip or knee 

arthroplasty and the side of subsequent arthroplasties in non-cognate large weight 

bearing joints. 
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7.3.3 Material and methods  

We obtained data from the Australian Orthopaedic Association National Joint 

Replacement Registry (AOA NJRR) and the Norwegian Arthroplasty Register (NAR). 

The Norwegian Arthroplasty Register and the Australian Orthopaedic Association 

National Joint Replacement Registry are national registries that record and analyse data 

on subjects who have received joint replacements. The NAR has collected data on hip 

arthroplasties since 1987 and knee arthroplasties since 1994 [79]. The AOA NJRR 

started collecting data on hip and knee arthroplasties in 1999 and became national in 

2002 [143]. The NAR captures 97% of all hip and knee replacements performed in 

Norway [81]. The AOA NJRR also has excellent coverage, after validation of its 

records against state hospital data, the AOA NJRR obtains an “ almost complete dataset 

relating to hip and knee replacement in Australia”[143]. 

We obtained data on subjects who had received a first recorded hip or knee arthroplasty 

for OA in the period from January 1, 2002 to December 31, 2010 from the AOA NJRR 

and the NAR. Individuals who had received a hip or a knee arthroplasty before January 

1, 2002 were excluded, as were individuals who were registered with a revision but 

without a primary arthroplasty. We also excluded individuals who had received two 

arthroplasties on the same day because the focus of the study was progression of OA. 

Some patients could have received arthroplasties prior to the time that the NAR and the 

AOA NJRR were established. Including these patients in the study sample would lead 

to inflation of the risk set and potentially bias the estimates. In order to minimise this 

complication, especially with regard to the Australian data, patients aged 55-74 years 

were selected because individuals within this age group compared to older individuals 

were less likely to have received an arthroplasty prior to 2002 that was not recorded in 

the joint registries. The lower age limit was selected because younger individuals had 

low prevalence of OA compared to the selected age group. For descriptive purposes, 

individuals were categorised into two groups based on age (55-64 years and 65-74 

years). 
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The arthroplasty history of interest consisted of four possible arthroplasties; two hips 

and two knees. We developed a multi-state model where patients were followed as they 

moved through different possible states from a first arthroplasty (either hip or knee) to 

receiving subsequent hip or knee arthroplasties, death or until study closure (right 

censored). The states describe conditions such as having had a joint replacement. When 

an event occurs, such as receiving a joint replacement, the individual changes state. 

Once the structure of the multi-state model is specified it can provide probabilities and 

hazard ratios (HRs) associated with states and with movements from one state to 

another [52]. 

The model with 14 possible states that can be occupied (boxes), and paths (arrows) that 

can be travelled, is illustrated in Figure 7.1. The-starting point for an individual is any 

one of four possibilities (left hip, right hip, left knee, right knee). After the first 

arthroplasty there is a total of three possible subsequent primary arthroplasties for an 

individual (contralateral cognate, left non-cognate, right cognate). The possibilities for 

the second primary arthroplasty is therefore one of the three remaining hip(s)/knee(s). 

The possibilities for the third primary arthroplasty is one of the remaining two 

hips(s)/knee(s) and so forth. At any time subjects could enter a so-called "absorbing" 

state, being dead (we adopt the naming convention that 'death' is an event and being 

'dead' is a state [50]). Because the aim of the study was to investigate the progression of 

joint replacements for OA, individuals who received subsequent arthroplasties for other 

indications (e.g. fractured neck of femur) were merged with the state dead. The use of 

multi-state models and notation in analysing complex arthroplasty histories are 

described in more detail in a previous paper [127]. 
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Figure 7.1: Multi-state model 

A Cox proportional hazards model [15] was used to estimate the effect of covariates on 

the transition hazards between states in the model, that is, the instantaneous risk (rate) 

of a subject moving from one state to another at a given point in time, conditional on 

being at risk for that particular transition at the time. In order to choose time scale in the 
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model, preliminary analyses were performed to assess if the processes were Markov, 

that is, if the hazard rates were independent of past states and time spent in current state 

[144]. Time spent in previous states and in current states were included as covariates in 

the model and the results indicated that time spent in the current state, but not in the 

previous state affected the transition hazards. Therefore a model was chosen where time 

was reset (clock-reset model or semi-Markov [51]) after entering a new state. The Cox 

model was stratified on transitions such that transition hazards were calculated for each 

possible transition and the covariates were transition specific. The covariate of primary 

focus was the side (right or left) of the first arthroplasty as we wished to assess if the 

hazards of subsequent transitions were dependent on whether subjects received their 

first arthroplasty on the right side or on the left side. The HRs were adjusted for age, sex 

and which joint had a revision (time dependent covariate).The proportional hazards 

assumption in the Cox model was checked with Schoenfeld residuals for each transition 

and found to be satisfactory. 

To illustrate the possible states through which individuals could move, the full model is 

presented in Figure 7.1. However, we only present HRs that are relevant for the aim of 

the study, that is, HRs that compare the effect of side of the first arthroplasty (right vs. 

left) on transitions to arthroplasties in non-cognate joints. The transition paths and states 

of interest are highlighted Figure 7.1. 

In order to further assess if there was a difference in the absolute risk of having received 

an arthroplasty in a hip or knee followed by an arthroplasty in a non-cognate joint at 

different points in time, we estimated the state probabilities for transitions from state 1 

to state 3 and from state 1 to state 4 using the Aalen-Johansen estimator [59]. 

Observations were right-censored on December 31, 2010 after the last event (after last 

arthroplasty) if death had not yet occurred. For the data preparation and analyses we 

used the 'mstate' package [128] in the software environment 'R' [108] and Stata version 

11. 
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7.3.4 Results  

There were 200,730 subjects included from the AOA NJRR and 31,868 subjects from 

the NAR. The distribution of patients by type of first arthroplasty (hip or knee), country, 

age, sex and side of first arthroplasty is presented in Table 7.1. The data contain records 

on 98,420 first hip arthroplasties and 134,178 first knee arthroplasties. In Australia more 

subjects received first knee than first hip arthroplasties (61% vs. 39%), whereas in 

Norway more subjects received first hip than first knee arthroplasties (62% vs. 38%). 

For both countries there were more first arthroplasties on right sides with this being 

most pronounced for first hip arthroplasties from Norway. The Norwegian data had a 

lower proportion of males than females, especially for hip arthroplasties. In the 

Australian data, this was also the case for knee arthroplasties, whereas in the hip data 

there were equal proportions of males and females. For both hip and knee arthroplasties 

there were more subjects in the oldest age group. 

Table 7.1: Distribution of individuals according to covariates. 

  First arthroplasty hip  First arthroplasty knee 

  Australia Norway  Australia Norway 

Age: 55-64 years 34,093 (43%) 7,691 (39%)  50,854 (42%) 5,286 (44%) 

 65-74 years 44,541 (57%) 12,095 (61%)  71,242 (58%) 6,796 (56%) 

       

Sex: Males 39,435 (50%) 6,816 (34%)  54,462 (45%) 4,554 (38%) 

 Females 39,199 (50%) 12,970 (66%)  67,634 (55%) 7,528 (62%) 

       

Side: Left 34,715 (44%) 8,003 (40%)  55,149 (45%) 5,447 (45%) 

 Right 43,919 (56%) 11,783 (60%)  66,947 (55%) 6,635 (55%) 

Total  78,634 19,786  122,096 12,082 
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Table 7.2: Numbers and percent of events in the multi-state model (Figure 7.1) at 

the end of the study period for patients whose first arthroplasty was a either a hip 

or a knee arthroplasty for OA. 

 First arthroplasty hip  First arthroplasty knee 

 Australia  Norway  Australia  Norway 

 n (%*)  n (%*)  n (%*)  n (%*) 

1 arthroplasty 78,634 

(100) 

 19,786 

(100)  

 122,096 

(100) 

 12,082 

(100) 

No event  58,303 (74)  14,414 (73)  87,874 (72)  8714 (72) 

state 1 → state 2 12,668 (16)  3867 (20)  26,433 (22)  2521 (21) 

state 1 → state 3 1828 (2)  228 (1)  1348 (1)  133 (1) 

state 1 → state 4 2072 (3)  257 (1)  1772 (1)  222 (2) 

state 1 → state 5 3763 (5)  1020 (5)  4669 (4)  492 (4) 

state 2 → state 6 172 (1)  26 (1)  268 (1)  27 (1) 

state 2 → state 7 232 (2)  46 (1)  335 (1)  46 (2) 

state 3 → state 6 127 (7)  14 (6)  134 (10)  10 (8) 

state 3 → state 8 208 (11)  26 (11)  159 (12)  23 (17) 

state 4 → state 7 153 (7)  26 (10)  196 (11)  17 (8) 

state 4 → state 8 241 (12)  33 (13)  158 (9)  27 (12) 

state 2-4 → state 9 -

11 
574 (3) 

 
154 (4) 

 
952 (3) 

 
94 (3) 

state 6-8 → state 12 97 (10)  20 (12)  127 (10)  8 (5) 

state 6-8 → state 13 20 (2)  3 (2)  25 (2)  3 (2) 

state 12 → state 14 1 (1)  0 (0)  4 (3)  0 (0) 

*Percent of number of individuals who entered the state 

 

Table 7.2 shows the numbers and proportions of arthroplasty events that had occurred at 

the end of the study period. Between 72% and 74% of the subjects did not receive 

another arthroplasty within the study period. Between 16% and 22% of subjects who 
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had a first hip or knee arthroplasty received a second hip or knee arthroplasty 

respectively. If the second arthroplasty was in the same type of joint (cognate joint) as 

the first, only 1-2% went on to have a third arthroplasty. If the second arthroplasty was 

in a non-cognate joint (e.g. hip followed by knee), 9-17% of subjects went on to have 

another arthroplasty in the contralateral joint to the second arthroplasty (state 3 → 8 and 

state 4 → 8) . The highlighted transitions in Table 7.2 correspond to the HRs presented 

in Table 7.3. 

Table 7.3 shows the effect of side of first arthroplasty (either hip or knee) adjusted for 

age and sex on the transition hazards between the states highlighted in Figure 7.1 and 

Table 7.2. Occurrence of revision was included in transitions where it had a significant 

effect. After the first hip arthroplasty the hazard of receiving a knee on the contralateral 

side was higher than the hazard of receiving a knee on the ipsilateral side. That is, for 

subjects who had received a hip first, the hazard ratio (right vs. left first hip) of 

receiving a left knee (state 1 →  3) was 1.83 (95% confidence interval (CI): 1.65, 2.02) 

and 2.97 (95% CI: 2.10, 4.20) for Australian and Norwegian subjects respectively 

(illustrated in Figure 7.2), whereas for receiving a right knee (state 1 →  4) the hazard 

ratio was 0.52 (95% CI: 0.48, 0.57) for Australians and 0.51 (95% CI: 0.40, 0.65) for 

Norwegians. 

For subjects who received a second knee following a hip and a knee (state 3 →  8 and 

state 4 → 8), there was a higher hazard of receiving a knee contralateral than ipsilateral  

to the index hip. That is, the hazard ratio (right vs. left first hip) of receiving a 

subsequent right knee (state 3 → 8) was 0.74 (95% CI: 0.56, 0.99) and 0.72 (95% CI: 

0.26, 1.95) for Australian and Norwegian subjects respectively (illustrated in Figure 

7.3), whereas for receiving a subsequent left knee (state 4 → 8) the ha zard ratio was 

1.62 (95% CI: 1.26, 2.10) for Australians and 2.09 (95% CI: 1.01, 4.35) for 

Norwegians. For subjects who received a knee as a first arthroplasty evidence of a 

pattern was less consistent than for subjects who received a hip first (Table 7.3). The 

transition hazard of receiving a third arthroplasty after two arthroplasties of the same 
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type of joint (e.g. after bilateral hip arthroplasties) did not show a consistent association 

with the side of the first arthroplasty (Table 7.3, state 2 → 6 and state 2 → 7). 

Figures 7.4 and 7.5 show the estimated probabilities of occupying state 3 and 4 (Figure 

7.1) over a period of 5 years after the first arthroplasty. Figure 7.4 shows the estimated 

probabilities for individuals who had received a hip arthroplasty followed by a knee 

arthroplasty (state 3 on the left panel and state 4 on the right panel). The figure indicates 

that from approximately half a year after the initial arthroplasty the probabilities of 

having received a contralateral knee were consistently higher than the probabilities of 

having received an ipsilateral knee. For example, after 5 years the estimated 

probabilities of having received a left knee (contralateral) after a right hip were 

approximately 2.9 % and 1.5% for Australians and Norwegians respectively, whereas 

the probabilities of having received a left knee (ipsilateral) after a left hip were 

approximately 1.5% and 0.4% respectively (left panel Figure 7.4). Figure 7.5 shows the 

estimated probabilities for individuals who had received a knee arthroplasty followed by 

a hip arthroplasty (state 3 on the left panel and state 4 on the right panel). For both 

countries, there was less difference in the probabilities between receiving a contralateral 

hip and an ipsilateral hip. For example, after 5 years the estimated probabilities of 

having received a left hip (contralateral) after a right knee were approximately 1.2 % 

and 1.1% for Australians and Norwegians respectively. The probabilities of having 

received a left hip (ipsilateral) after a left knee were approximately 0.9% and 1.1% for 

Australians and Norwegians respectively. The probabilities of having received a left hip 

after a knee arthroplasty were also similar for the two countries, but the probabilities of 

having received a right hip after a knee was somewhat higher for the Norwegians than 

Australians over the 5-year period. 

.
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Table 7.3: Effect of side of first arthroplasty (hip or knee) on hazards for selected transitions in 

 the model. 

 Right vs. left hip  Right vs. left knee 

 Australia  Norway  Australia  Norway 

 HR (95% CI)  HR (95% CI)  HR (95% CI)  HR (95% CI) 

State 1→3 1.83 (1.65, 2.02)***  2.97 (2.10, 4.20)***  1.10 (0.99, 1.23)  1.08 (0.76, 1.52) 

1→4 0.52 (0.48, 0.57)***  0.51 (0.40, 0.65)***  0.87 (0.79, 0.95)*  0.77 (0.59, 1.001) 

        

State 2→6 1.25 (0.92, 1.69)  1.12 (0.52, 2.46)  0.95 (0.74, 1.20)  1.36 (0.63, 2.93)  

2→7 0.74 (0.58, 0.96)*  0.97 (0.54, 1.74)  1.05 (0.85, 1.30)  0.83 (0.47, 1.49) 

        

State 3→8 0.74 (0.56, 0.99)*  0.72 (0.26, 1.95)  0.87 (0.65, 1.22)   0.64 (0.26. 1.53) 

        

State 4→8 1.62 (1.26,2.10)***  2.09 (1.01, 4.35)*  1.34 (0.98, 1.84)   0.97 (0.45, 2.08) 

***P<0.001; *P<0.05. HR: Hazard ratio 
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Figure 7.2: Comparing hazards of receiving a left knee arthroplasty between 

individuals who had received a right hip arthroplasty with individuals who had 

received a left hip arthroplasty. HR: hazard ratio, λ(t|R)1→3: hazard of receiving a 

left knee given that first hip was a right hip, λ(t|L)1→3: hazard of receiving a left 

knee given that first hip was a left hip. 
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𝜆𝜆(𝑡𝑡|𝑅𝑅)3→8 

 
𝐻𝐻𝐻𝐻3→8 =  

𝜆𝜆(𝑡𝑡|𝑅𝑅)3→8

𝜆𝜆(𝑡𝑡|𝐿𝐿)3→8
 

 

 

𝜆𝜆(𝑡𝑡|𝐿𝐿)3→8 

 

Right knee 
(state 8) 

 

Figure 7.3: Comparing hazards of receiving a right knee between individuals who 

had received arthroplasties in right hip and left knee with individuals who had 

received arthroplasties in left hip and left knee. HR: hazard ratio, λ(t|R)3→8: 

hazard of receiving a right knee given that first hip was a right hip, λ(t|L)3→8: 

hazard of receiving a right knee given that first hip was a left hip. 
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Figure 7.4: Estimated probabilities for receiving a knee arthroplasty after having received a hip arthroplasty (AU: Australia, NOR: 

Norway, left panel: state 3, right panel: state 4). 
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Figure 7.5: Estimated probabilities for receiving a hip arthroplasty after having received a knee arthroplasty (AU: Australia, NOR: 

Norway, left panel: state 3, right panel: state 4).
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7.3.5 Discussion  

We used a multi-state model to investigate the progression of joint replacements in large 

weight bearing joints. The majority of individuals who received a second arthroplasty 

did so in the cognate contralateral joint. If the first arthroplasty was a hip, the hazards of 

receiving subsequent knee arthroplasties were higher on the contralateral side than on 

the ipsilateral side to the index arthroplasty. This was most pronounced for progression 

from hip arthroplasty to first knee arthroplasty but was also evident on the transition to 

receiving another (second) knee. Hence the side of first hip arthroplasty affected the rate 

of receiving subsequent knee arthroplasties. If the first arthroplasty was a knee, the 

hazards of receiving subsequent hip arthroplasties were generally higher on the 

contralateral side, but were not statistically significant. 

The estimated HRs express the relative effect of side of the first arthroplasty on the 

subsequent transitions to arthroplasties in other joints, but not the absolute probabilities 

of individuals receiving further arthroplasties. We therefore also estimated probabilities 

for transitions from the first hip or knee arthroplasty to a second arthroplasty in a non-

cognate joint. They showed the same pattern as the estimated HRs for the respective 

transitions. After 5 years, the probabilities of having received a knee contralateral to the 

index hip was more than 1.7 times the probabilities of having received a knee ipsilateral 

to the index hip, whereas there was little difference between the sides of hips relative to 

the previous knee arthroplasties. This was evident in data from both countries, but the 

probabilities for Australians to have received a knee after a hip were higher than for 

Norwegians (Figure 7.4). Australia has a higher incidence of knee arthroplasties than 

Norway [9], and the difference in probabilities may be partially explained by this. The 

somewhat higher probabilities for Norwegians compared to Australians to receive a 

right hip (but not left hip) after a knee arthroplasty are difficult to explain. They may be 

related to particular risk factors for OA in the Norwegian population as it has previously 

been reported that Norway has much higher incidence ratios (female/male) for THA 

than the other Nordic countries [145]. 
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 Our study has some limitations. Joint replacements may not be an ideal measure of the 

incidence of symptomatic end-stage OA. Several factors contribute to regional and 

national variation in rate of surgical treatment for OA, such as access to treatment, 

disparity by race or ethnic group, surgical waiting lists, socio-economic status, patient 

or orthopaedic surgeon preferences [146-149]. However, our study sample consisted of 

individuals who had received one arthroplasty for OA and some of the above factors 

would likely have less influence since the subjects already had been selected once for 

the same treatment. Furthermore, although there were differences in the relative 

proportion of hip and knee replacements in the Australian and the Norwegian registry 

data, the pattern of subsequent arthroplasties were similar between the two countries 

and are therefore likely to reflect the sequence of OA progression. 

The results are consistent with those of other studies that have shown the progression of 

end-stage OA in large weight bearing joints to be a non random process [129, 150, 151], 

but we did not find clear evidence of a difference in association between side of the first 

knee arthroplasty and the following hip arthroplasty as has been described by others 

[129]. This may be due to differences in study design. Our use of the multi-state 

modelling technique allows for a more comprehensive analysis of the data than previous 

studies. It enables the analysis of the entire arthroplasty history of interest which in our 

study was the sequence and timing of joint replacements after the first hip or knee to 

subsequent hip(s)/knee(s). The multi-state model, which is a generalisation of standard 

survival analysis of time to one event, not only takes the time to different events into 

account but also incorporates incomplete observations, that is, the information 

contained in the time that some subjects have been under observation without 

experiencing the event(s). Another strength of this study is that it is the first study using 

data from two large, independent population-based national arthroplasty registries 

showing that there is evidence for a pattern in the progression of OA. Previous studies 

have involved far fewer subjects, from 50 to 3000, compared to our study, which entails 

more than 230,000 subjects. Both registries have excellent coverage of joint 

replacement procedures performed in the respective countries[81, 143] and the two 

countries have developed health systems [152]. The Australian registry is comparatively 
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large whereas the Norwegian registry has been operating for more than 20 years, thus 

data from the two registries complement each other. 

Several studies have found evidence of bilateral symmetrical OA in large weight 

bearing joints [153] which may indicate that some individuals have an increased 

susceptibility to develop OA, due to systemic factors and/or genetic factors. In addition, 

biomechanical factors may contribute to the progression of end-stage OA to the 

contralateral joint. Shakoor et al.[154] performed a gait study in 62 patients with 

unilateral symptomatic and radiological hip OA, and found evidence that the 

contralateral asymptomatic knee and hip had increased dynamic loading as well as 

increased medial compartment tibial bone mineral density. Hence, the consequence of 

gait alterations due to a diseased hip may be responsible for the subsequent 

development of OA in the contralateral knee. Furthermore, several studies have found 

that gait does not return to normal after THA and TKA [155-159] which may explain 

the progression of OA in the non-operated limbs. Umeda et al. [150] did a longitudinal 

study in 30 women who had received hip arthroplasty, most for developmental 

dysplasia. Baseline radiographs showed no difference in knee OA between the operated 

and the non-operated side. At follow up, after minimum 10 years, there was 

significantly more severe knee OA medially in the non-THA side than the THA side. 

The authors concluded that this could be related to reduced offset of conventional 

femoral prostheses leading to shifts in mechanical axes. Further, leg length discrepancy 

(LLD) after THA is common [160].Tanaka et al.[161] found that postoperative LLD 

and stage of preoperative hip OA were the factors that had the largest influence on gait 

abnormalities after THA. Hence, the pattern of progression of joint replacements in 

large weight bearing joints, especially after the first hip replacement, may be related to 

LLD and associated pre and/or postoperative gait abnormalities. This is consistent with 

the work of Harvey et al. [162] who found that LLD was associated with prevalence, 

incidence and progression of knee OA. However, the registries have no access to data 

on LLD so we can make no definite statement about this. Further studies are needed to 

investigate whether the increased risk of receiving an arthroplasty in the contralateral 
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knee is related to having a THA and/or preoperative factors such as pain and altered gait 

associated with hip OA. 

In conclusion, we have demonstrated in data from two large population-based national 

arthroplasty registries of 55-74 year old subjects who received arthroplasties for OA, 

that there is evidence of an association between the side of the first hip arthroplasty and 

side of subsequent knee arthroplasties. This is indicative of a pattern of progression of 

OA in large weight bearing joints. The evidence of a pattern in the progression of joint 

replacements and the nature of this pattern are important for the understanding of the 

pathogenesis of OA as well as for prevention and treatment.  

 

END OF PUBLISHED ARTICLE
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8 SUMMARY AND CONCLUSIONS 

In this thesis statistical methods for analysing joint replacement registry data have been 

investigated. Joint replacement registries are important sources of data for evaluating 

outcomes of joint replacements. The use of appropriate statistical methods to analyse 

the data is of great importance. The overall aim of the thesis was to explore methods for 

analysing time to event data contained in joint replacement registries. The emphasis has 

been on multiple event data, more specifically methods for competing risks scenarios 

and multi-state modelling. 

In this final chapter, I summarise the main findings and contributions to knowledge, 

discuss limitations and address topics for future research. 

8.1 Main findings and contributions  

8.1.1 Non-parametric competing risks methods and arthroplasty data  

The Kaplan-Meier (KM) method is generally known to overestimate the probability of 

failure in the presence of competing risks. An important aim of joint registries is to 

identify poorly performing prostheses. Revision surgery is considered the main 

indicator of failure of the prosthesis. In Chapter 4, the aim was to apply KM methods to 

arthroplasty data and compare the estimates of risk of revision with estimates 

accounting for the competing risk of death. In order to evaluate the magnitude of the 

potential bias when using the KM method, subsets of data with different incidence of 

the competing risk of death were examined.  

It was evident that when the risk of the competing event death was high, such as that in 

individuals who received arthroplasty for fractured neck of femur, the KM method 

substantially overestimated the risk of revision. For example, 5 years after insertion of 

the primary procedure, the relative difference between the KM and CIF estimates was 

79% for the group of patients with the highest mortality and 1.4% for the group with the 
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lowest mortality. The relative difference increased with time due to the incidence of 

death increasing with increasing age.  

The results from this thesis are important since survival (or failure) curves are often 

used to estimate the risk of revision of prostheses over time, and as this work 

demonstrates, these estimates may be substantially biased if competing risks are not 

taken into account. Scenarios where accounting for competing risks in joint replacement 

registries are especially relevant include those where the incidence of death is high, 

where one reason for revision competes with other reasons for revision, or where there 

are long follow-up times. Prior to publication of the article in Chapter 4, only a few 

studies in orthopaedic research had been published addressing competing risks. This 

was the first article to show evidence of clinically relevant bias in the KM method on 

data from a large joint replacement registry. The article makes recommendations for 

analysis of joint replacement data and informs clinicians and other readers on how to 

interpret results from the KM method published in registry reports. 

8.1.2  Competing risks regression and arthroplasty data  

Joint replacement registries collect and record information on a number of 

characteristics of the recipients of joint prostheses such as age and sex, type of 

prosthesis, type of fixation, indication for the procedure etc. In the analysis of these 

data, it is of interest to obtain estimates of effects on hazards and risks of failures 

adjusted for appropriate covariates. Several approaches for regression modelling in 

competing risks scenarios exist, but prior to the article presented in Chapter 5, their use 

had not been examined in the analysis of joint replacement registry data. The aim of the 

article in Chapter 5 was to describe some of the available models for dealing with 

competing risks in the analysis of joint replacement registry data and use them to 

examine the effects of covariates on the hazard rates and the risks of revision. 

The effects of various covariates on the hazard of revision were modelled with a Cox-

Aalen model, allowing the effect of fixation (cementless vs. cemented) to vary with 

time. The effect on the actual risk of revision, treating death as a competing risk, was 
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modelled with an extension of the Fine and Gray model, also allowing the effect of 

fixation to vary with time. The key finding in the article was that some covariates had a 

different effect on the hazard of revision than on the actual risk of revision, thus 

demonstrating that in competing risks scenarios, the effect on the risk of an event 

depends on the cause specific hazard for every event. Further, predictions based on both 

models showed that estimates based on the Cox-Aalen model overestimated the risk of 

revision compared to estimates from the modified Fine and Gray model. This was most 

pronounced for the group with the highest incidence of the competing risk of death. 

The article in Chapter 5 is the first to demonstrate that the effect of covariates on the 

hazard rate and risk of revision may be different. Thus, as discussed in Chapter 4, 

results from joint replacement registries must be interpreted with care when competing 

risks are present. The articles in Chapters 4 and 5 should contribute to increased 

awareness of competing risks issues in the orthopaedic research and registry community 

and alert analysts to use appropriate tools in the presence of competing risks. 

Furthermore, although the Cox PH model is the standard regression model in time to 

event analysis, Aalen’s additive model has many advantages as demonstrated in the 

article in Chapter 5 where the changing effect of a time-varying covariate can be 

visualised and thereby provide a clearer understanding of the data. 

8.1.3 Multi-state models and arthroplasty histories  

With the increases in life expectancy of the population, the increase in the rate of joint 

replacements is predicted to continue, meaning also that patients are likely to have 

several joint replacement procedures during their lifetime. Thus, data contained in joint 

replacement registries is expanding and is getting more complex. The aim of the article 

in Chapter 6 was to examine the use of multi-state modelling techniques in the analysis 

of data on complex arthroplasty histories with several outcomes of interest occurring 

over time. The aim was also to develop a system of notation that could assist in the 

management and analysis of large joint replacement data sets. 



 

123 

 

A multi-state model was developed where individuals were followed as they moved 

through different possible states from their first hip arthroplasty to receiving a second 

arthroplasty, to revision, death or until study closure. The model presented in Chapter 6 

was used to describe numbers and proportions of patients in the cohort who experienced 

these events, their transition probabilities and the effect of sex on the transition 

intensities in the model. It was demonstrated that multi-state modelling techniques were 

well suited to the analysis and description of complex arthroplasty histories. The 

Summary Notation for Arthroplasty Histories (SNAH) code proved to be extremely 

useful when managing the large and complex data set. 

The article in Chapter 6 contributes to the increasing research literature on the 

application and use of multi-state modelling techniques in medical research. The 

development has been facilitated by more advanced computer capabilities and increased 

availability of necessary software. The work presented in Chapter 6 will lead to 

increased awareness of advantages and possibilities of multi-state models in the analysis 

of multiple events amongst researchers using arthroplasty data. No system for managing 

complex arthroplasty histories has existed until now. The SNAH code could prove 

useful not only in the management of arthroplasty data, but also in a clinical context 

describing a patient’s arthroplasty history. 

8.1.4 Application of multi-state models and osteoarthritis  

Data from joint replacement registries contain unique information on joint replacements 

in the population. For example, the indication for patients receiving an arthroplasty is 

recorded. Joint replacement is often a successful treatment for end-stage osteoarthritis 

and symptomatic osteoarthritis is the most common indication for joint replacement. 

Subsequently, the incidence of joint replacement is considered an indicator of the 

incidence of end stage osteoarthritis. The aim of the article in Chapter 7 was to apply 

multi-state modelling methods to joint replacement registry data to investigate 

progression of hip and knee osteoarthritis. 
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Data were obtained from two national joint replacement registries. A multi-state model 

was developed where individuals were followed from a first hip or knee arthroplasty for 

osteoarthritis to subsequent hip or knee arthroplasties, death or study closure. The effect 

of side of the first arthroplasty on the transition intensities and transition probabilities 

was estimated. The article demonstrated that there was evidence of an association 

between the side of the first hip arthroplasty and the side of subsequent knee 

arthroplasty. 

Osteoarthritis is a common chronic disease. Factors such as older age and obesity are 

known to increase the risk, but the pathogenesis of osteoarthritis is not clear. Results 

from the article in Chapter 7 contribute to an understanding of the pathogenesis of 

osteoarthritis informed by the sequence of progression of osteoarthritis to different 

joints. This has implications for further research into causes, prevention and treatment 

of osteoarthritis. This article also illustrates the application of multi-state models to this 

important area of research and contributes information about alternative approaches to 

the analysis and use of arthroplasty registry data. 

8.2 Limitations and future directions  

Analysis of time to event data is a research area with a high level of activity. This thesis 

has focused on multi-state modelling to explore event histories contained in arthroplasty 

data, both in competing risks scenarios and when there are multiple joint procedures per 

patient. There are other approaches to analysing time to event data with multiple events. 

It would be of interest to examine how multi-state models compare with other models, 

such as marginal and conditional models in the analysis of arthroplasty data. Although 

the role of frailties in multi-state models is not clear [163], future work may consider 

their use accounting for clustering of events in arthroplasty data, for example by 

hospitals. Further, in this thesis, data on patients who received two arthroplasties on the 

same day were excluded and the performance of different types of models to analyse 

multivariate event data such as these would be of interest. 
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The most commonly used methods to analyse arthroplasty registry data are the Kaplan- 

Meier survival curves and the Cox PH model. Further investigation into the use of 

alternatives to the Cox PH model is warranted. An extension of one of these 

alternatives, Aalen’s additive model, was used in this thesis and Aalen’s additive model 

should be used more widely in the analysis of time to event data. The National Joint 

Registry in the United Kingdom, which is the largest joint replacement registry in the 

world, use a flexible parametric model to obtain relative and absolute hazards as well as 

to account for time varying effect and competing risks. Comparisons of this approach 

with the multi-state model used in this thesis would be interesting as both approaches 

have theoretical advantages over other (more commonly utilised) models. A related 

issue of interest is collaboration between national registries in evaluating statistical 

methods to analyse the registry data. Although national joint replacement registries 

operate mainly for their own use and have national characteristics [164], standardisation 

in reporting and analysis methods would be useful in disseminating and comparing 

results amongst stakeholders in registries worldwide. Continued evaluation of statistical 

methods to analyse the data presented in annual reports is of utmost importance. 

Because national regulations differ, various restrictions exist in gaining access to data in 

national joint replacements registries [71]. The data for this thesis were raw de-

identified data obtained from the Australian and Norwegian registries offering a unique 

opportunity to examine characteristics of both registries. Continued collaboration of this 

kind is important and sharing of information across countries is beneficial for all parties 

involved. 

In many joint replacement registries such as the AOA NJRR and the NAR, the amount 

of data collected on each joint replacement procedure is relatively small which 

contributes to good compliance and reporting. However, the resulting outcome measure, 

such as revision, consequently becomes crude as it may depend on many factors that are 

not recorded. One way to handle this issue, which will become increasingly important, 

is to link joint replacement data to other types of registries and data bases. Some of 

these other data bases may contain important measurements that are continually 

updated. An interesting approach advocated by Aalen [165], makes use of these 
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additional data by integrating time to event and longitudinal measurement data in the 

analysis and may prove to be a very useful tool in describing complex arthroplasty 

histories.  

The SNAH code described in the article in Chapter 6 was developed to describe and 

manage arthroplasty history event data. Future developments could consider a similar 

approach for the notation of sequential events in other types of registry data where there 

is interest in analysing and keeping track of patients’ event histories. For example, 

outcomes of cancer treatment are often modelled with a multi-state model and a similar 

summary notation could be used to describe the sequence of treatments and relapses 

after the diagnosis of cancer for each individual patient.  

8.3 Conclusion  

This thesis has investigated methods for analysing time to event data contained in joint 

replacement registry data. The focus has been on exploring how multi-state models can 

be used to handle multiple events in these data. It has been demonstrated that in the 

presence of a competing risk such as death, the Kaplan-Meier method might lead to 

clinically relevant biased estimates of the risk of revision. The effect of covariates on 

the risk and on the rate of revision may differ and it is important that estimates obtained 

from the Cox PH model and competing risks regression models are interpreted 

correctly. Multi-state models provide a useful tool to describe and analyse data 

containing complex arthroplasty histories.  
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