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Background: Previous studies have suggested that the probability function of 1 minus the Kaplan-Meier survivorship
overestimates revision rates of implants and that patient death should be included in estimates as a competing risk
factor. The present study aims to demonstrate that this line of thinking is incorrect and is a misunderstanding of both the
Kaplan-Meier method and competing risks.

Methods: This study demonstrated the differences, misunderstandings, and interpretations of classical, competing-
risk, and illness-death models with use of data from the Norwegian Arthroplasty Register for 15,734 cemented and 7,867
uncemented total hip arthroplasties (THAs) performed from 1987 to 2000, with fixation as the exposure variable.

Results: The mean age was higher for patients who underwent cemented (72 years) versus uncemented THA (53 years);
as such, a greater proportion of patients who underwent cemented THA had died during the time of the study (47%
compared with 29%). The risk of revision at 20 years was 18% for cemented and 42% for uncemented THAs. The
cumulative incidence function at 20 years was 11% for cemented and 36% for uncemented THAs. The prevalence of
revision at 20 years was 6% for cemented and 31% for uncemented THAs.

Conclusions: Adding death as a competing risk will always attenuate the probability of revision and does not correct for
dependency between patient death and THA revision. Adjustment for age and sex almost eliminated differences in risk
estimates between the different regression models. In the analysis of time until revision of joint replacements, classical
survival analyses are appropriate and should be advocated.

Level of Evidence: Prognostic Level lll. See Instructions for Authors for a complete description of levels of evidence.
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arthroplasties (THAs) at 2 different hospitals. Both hos-

pitals utilize the same implant, the procedure is performed
with the same operating team, and all other conditions are iden-
tical; the only difference between settings is that 1 hospital has a
patient population with a high mortality rate and the other has
patients with low mortality. The quality of the THAs performed is
equal, which should be reflected in the statistical analysis.
However, because patients at the high-mortality hospital may
die before revision is needed, the low-mortality hospital will
experience—and need to plan for—more revisions than the high-
mortality hospital, even if the quality of the THAs is equal.

C onsider the situation that 1 surgeon performs total hip

Because THAs are followed over time until the implant is
revised or lost to follow-up, survival (time-to-event, event history)
analyses are needed to analyze the risk of revision.

Competing-risk analyses have been increasingly popular for
the assessment of joint-replacement data™, and some studies have
advocated the use of such analyses for follow-ups of >10 years™.

For time-to-revision data, some authors have claimed
that the probability function of 1 minus the Kaplan-Meier
survivorship overestimates the rate of revision in the presence
of patient death®***",

Recently, there have been discussions regarding whether
patient death is a competing risk relative to THA revision and
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Fig. 1

Clgassical survival model. State O (red) is “primary THA” and state 1 (green)
is “revised THA.” The probability of being in state O is S(t) (survival prob-
ability) and the probability of being in state 1 is F4(t). The immediate risk
(hazard) for shifting between states O and 1 is hg,(t).

how results from competing-risk analyses should be interpreted'* ",
These studies utilize either short-term follow-up or simulated data
sets. With use of nearly complete, 30-year THA follow-up data
from a national registry, the present study was performed to
demonstrate and describe the inaccuracy of competing-risk
analysis for revision THA. The differences between classical
(i.e., Kaplan-Meier and Cox regression), competing-risk (i.e.,
cumulative incidence functions), and illness-death models are
discussed. Additionally, we present flexible alternatives that
utilize pseudo-data, analyzing restricted mean failure times.
Finally, we aimed to explain the misunderstandings and inter-
pretations of different methods, without the use of technical or
mathematical terms.

Materials and Methods
To illustrate distinctions between statistical approaches, we

used a data set from the Norwegian Arthroplasty Register,
which started registration of THAs in September 1987, with a
completeness of up to 97%". Based on the Norwegian personal
identification number, we linked primary and revision opera-
tions, with complete data on death or emigration'. Our pri-
mary exposure was 2 categories of fixation (i.e., cemented and
uncemented for both components). We limited data to primary
THAs implanted between 1987 and 2000. During that period,
several poorly performing uncemented THAs'*"” and inferior
cement types'® were utilized in Norway. Uncemented THAs
were commonly utilized in younger patients and cemented
THAs in elderly patients. Hence, patients with cemented THAs
had higher mortality than those with uncemented THAs, which
influences the results from the different statistical approaches. All
7,867 uncemented THAs were included, whereas a random subset
of 15,734 of 112,873 cemented THAs, twice the number of un-
cemented procedures, were included.

The end of follow-up was December 31, 2018. Only 0.2%

of patients emigrated, and these were considered censored for
all models.

Statistical Methods

Classical Survival Analysis

In classical models of time to revision (Fig. 1), the hazard is
defined as the immediate risk of revision just after time t, given
that the implant is at risk at time t. In Figure 1, the hazard (hy, [t])
is indicated as an arrow between state 0 and state 1, specifying the
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immediate risk of shifting states. For the classical survival model
(Fig. 1), the Kaplan-Meier method®” estimates the cumulative
probability of being in state 0. One minus the Kaplan-Meier will
hence estimate the cumulative probability for state 1, and thereis a
1-to-1 relationship between the hazard and the probabilities of
being in each of the 2 states™, assuming that time to revision and
censoring are independent. Thus, analyses of hazards (e.g., Cox
regression”’) will be analyses of probabilities”. Importantly, the
sum of the 2 probabilities will be 1 (100%). In the classical survival
model (Fig. 1), loss of the patient to follow-up (including death or
emigration) or end of follow-up in 2018 will lead to censoring of
the follow-up time for the THA.

Competing Risks

In the competing-risk model (Fig. 2), patient death is included
as a separate state. Hence, there are now 2 mutually exclusive
hazards (hg,[t] and hg,[t]) simultaneously influencing the prob-
abilities for being in each of the 3 states (0, 1, or 2). The survival
probability (i.e., the probability of state 0) can directly be calculated
(applying the Kaplan-Meier method) based on the sum of the 2
mutually exclusive hazards (hsym[t] = hoi[t] + hgy[t]). The
cumulative probability of being in the 2 competing states (i.e.,
the cumulative incidence functions) is based on each of the
hazards and the total survival®. For the competing-risk model,
analysis of each hazard (e.g., using Cox regression) is still valid,
but does not reflect the probability of being in the states.

o (1)

F,(1)

Fig. 2

Cimpeting—risk model. State O (red) is “patient alive with primary THA,”
state 1 (green) is “patient with revised THA,” and state 2 (blue) is “dead
patient.” The probability of being in state O is S(t) (survival probability), the
probability of being in state 1 is F4(t), and the probability of being in state 2

is F5(t). The immediate risk (hazard) for shifting between states O and 1 is
ho4(t) and the hazard for shifting between states O and 2 is hg(t).
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In the competing-risk model, calculation of cumulative
incidence functions can be performed with use of the Aalen-
Johansen estimator or via direct methods***. The Aalen-
Johansen method is based on the increments for the cumula-
tive hazard (e.g., Nelson-Aalen method®). Fine and Gray
suggested a regression model for the cumulative incidence
functions (i.e., the likelihood of being in the state of interest; e.g.,
state 1), expressed as sub-hazard ratios, with the possibility to
adjust for covariates™.

Illness-Deaths Models

Extending the competing risk model with a hazard (h;,[t]) for
changing from revision THA (state 1) to patient death (state 2),
we have an illness-death model (Fig. 3). Still, each hazard can
be analyzed separately. Hence, Cox regression models will still
be valid for the shifts between states but will not reflect prob-
abilities for being in any of the states.

The Use of Pseudo-Data

With use of pseudo-data, a variety of analyses of classical sur-
vival, competing-risk, illness-death, and elaborate multistate
models can be performed. The calculation of pseudo-data is
described elsewhere”. Pseudo-data can be expressed as several
quantities, such as probabilities of being in different states or
restricted mean duration in a given state (e.g., restricted mean

0

h(0)

hoa(t)

Fig. 3

Illiess-death model. State O (red) is “patient alive with primary THA,” state
1 (green) is “patient alive with revised THA,” and state 2 (blue) is “dead
patient.” The probability of being in state O is S(t) (survival probability), the
probability of being in state 1 is F4(t), and the probability of being in state 2
is Fo(t). The immediate risk (hazard) for shifting between states O and 1 is
ho4(t), the hazard for shifting between states O and 2 is hgs(t), and the
hazard for shifting between states 1 and 2 is h45(t).
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TABLE | Descriptive Data for the Cemented and Uncemented
THAs*

Cemented THAs Uncemented THAs

No. 15,734 (100%) 7,867 (100%)
Age (yr) 72.4 £8.7 53.3+11.8

Male sex 4,589 (29.2%) 3,104 (39.5%)
No. of revisions 1,167 (7.4%) 2,695 (34.3%)
No. of deaths 7,431 (47.2%) 2,320 (29.5%)

*Values are given as the count with the percentage in parentheses
or as the mean + standard deviation.

survival or restricted mean failure time). Pseudo-data are typi-
cally analyzed with use of generalized estimating equations with
an appropriate link-function and distribution™.

In the present study, pseudo-data were utilized to cal-
culate differences in probabilities (hazard scale, using a com-
plementary log-log link function) and restricted mean differences
in time spent (using an identity link function) in state 1 (restricted
mean failure times). Pseudo-data and probability curves were
calculated with use of the R statistical framework (R Foundation
for Statistical Computing). Regression models were analyzed with
use of Stata (version 16; StataCorp). Significance was set at 0.05.

Source of Funding
There was no external funding for this study.

Results

he mean age at the time of the primary procedure was

higher for cemented THAs than for uncemented THAs,
and the frequency of males was higher for uncemented THAs
(Table I). The numbers of revisions and patient deaths for
cemented and uncemented THAs are presented in Table II. For
the classical survival model, follow-up was censored at the time
of patient death.

The estimated probabilities, calculated with use of the
Kaplan-Meier method, show that the cumulative risk of revi-
sion was less for cemented (18.1%; 95% confidence interval
[CI], 15.2% to 21.0%) than for uncemented THAs (42.2%;
95% CI, 39.5% to 44.9%) at 20 years (Figs. 4-A and 4-B).

Including patient death as a competing risk, we observed
that the probability (cumulative incidence function) of observing
a patient with a revised THAs (10.9%; 95% CI, 8.5% to 13.2%)
was more influenced by mortality among patients with cemented
THAs than uncemented THAs (36.4%; 95% CI, 33.7% to 39.0%)
at 20 years (Figs. 4-C and 4-D).

In the illness-death model, with a transition from revision
THAs to patient death, the probability of being alive at 20 years
with a revised cemented THA (5.6%; 95% CI, 3.9% to 7.3%) was
substantially lower than that of patients with a revised uncemented
THA (31.2%; 95% CI, 28.7% to 33.8%) (Figs. 4-E and 4-F).

Risk estimates comparing cemented THA with uncemented
THA with use of the unadjusted Fine and Gray model were larger
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TABLE Il Transitions Between Primary THA, Revision THA, and Death for the Cemented and Uncemented THAs*

From Revision THA (State 1) Patient Death (State 2)

Cemented

Primary THA (state 0) 15,734 1,167 (7.4%) 6,965 (44.3%)

Revision THA (state 1) 1,167 466 (39.9%)

Total 1,167 (6.9%) 7,431 (44.0%)
Uncemented

Primary THA (state 0O) 7,867 2,695 (34.3%) 1,824 (23.2%)

Revision THA (state 1) 2,695 496 (18.4%)

Total 2,695 (25.5%) 2,320 (22.0%)

*Values are given as the count with the percentage in parentheses.

than estimates from the unadjusted Cox model because of the high
mortality for patients with cemented THAs. These 2 estimates
were more similar following adjustment for age and sex (Table I1I).

Classical and competing-risk models for the probability
of revision THA based on pseudo-data corresponded to the
results from the Cox and Fine and Gray methods, respectively
(Table IV). Additionally, in the illness-death model, the difference
in probability of a patient being alive with a revision (state 1) was
even larger between patients with uncemented and cemented
THAs than for the 2 former approaches (Table IV).

Using pseudo-data to analyze the restricted mean failure
time based on 25 years of observation, we observed that un-
cemented THAs were revised at an average of 4.13 years earlier
than cemented THAs (Table V). Including patient mortality, we
observed that patients with uncemented THAs underwent revi-
sion at a mean of 4.31 years earlier than patients with cemented
THAs. Furthermore, patients with uncemented THAs lived an
average of 4.23 years longer following revision. Adjusting for age
and sex, the different regressions performed with use of pseudo-
data had similar results to each other (Tables IV and V).

Discussion

here is an important difference between the classical,

competing-risk, and illness-death models. For the clas-
sical analyses, we emphasize that revision of the implant is
analyzed. This is also highlighted in the naming of the 2 states
in the Figure 1 legend: “Primary THA” and “Revised THA.”
For the competing-risk and illness-death models, which include
patient death as a separate state, the definition of the initial state
changes to “Patient alive with primary THA.” This change is of
crucial importance because it demonstrates that the analysis is
focused on the patient rather than singularly on the THA, as is the
case with classical analysis.

Several authors have claimed that competing-risk anal-
yses of joint replacements, utilizing patient death as a com-
peting risk, should replace the classical statistical approaches,
particularly for cohorts with >10 years of follow-up and a high
rate of mortality’”. These recommendations represent a mis-
understanding of the concepts of competing-risk analysis and

of the assumptions for the classical survival analysis. Some
studies have acknowledged that competing-risk analysis is not
directly comparable with the classical survival analysis"'*"*, and
in a recent article, Sayers et al. demonstrated the appropriate-
ness of Kaplan-Meier estimation for the risk of revision THA".
Furthermore, Buzkova et al. showed that death as a competing
risk can yield misleading results™.

Independency between the time to censoring and time to
revision or failure is a crucial assumption in the calculation of
Kaplan-Meier estimates. This assumption implies that implants
lost to follow-up (i.e., censored) have the same probability of
revision as implants still at risk. If there is dependency between
time to THA revision and patient death, the Kaplan-Meier esti-
mate will be biased. In the example, if the implants in patients who
died were more likely to be loose, they would have had a higher
risk of THA revision at the time of death; thus, as shown by
Murray et al., 1 minus the Kaplan-Meier estimate will falsely
underestimate the true revision risk*. Conversely, if the THA in a
dead patient had a lower risk of revision, 1 minus the Kaplan-
Meier estimate will falsely overestimate the true revision risk.
Adding death as a competing risk relative to THA revision will
always attenuate the probability of THA revision and conse-
quently does not correct for dependency between time to death
and time to revision. This was clearly illustrated by Sayers et al.”.
The sum of probabilities for the different states will always equal
1 (100%); therefore, adding a new state will always attenuate the
probabilities for the other states. The assumption of independency
between the times to revision, death, and censoring is still present
in competing-risk analysis. Methods to adjust the Kaplan-Meier
estimate for dependency exist, such as utilizing inverse probability
weights to adjust for the censoring process (e.g., see page 175 in
the book by Aalen et al.”").

For analysis of patient mortality after joint replacement
surgery, survival analysis is needed**”. Overall mortality is
often of primary interest. If multiple causes of death are studied™,
competing-risk analysis is appropriate, and each cause of death
(respiratory disorders, circulatory disorders, etc.) represents
competing causes/risks”. Hence, for analysis of 1 cause, con-
sidering the other causes as competing risks, using cumulative
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Estimated probabilities: for a classical survival model for cemented (A) and uncemented (B) THAs, for the states described in Figure 1; for a competing risk
model for cemented (C) and uncemented (D) THAs, for the states described in Figure 2; and for an iliness-death model for cemented (E) and uncemented (F)
THASs, for the states described in Figure 3. Red = state O (primary THA or patient alive with primary THA), green =state 1 (revised THA or patient with revised

THA), and blue = state 2 (dead patient).

incidence functions, will cause the mortality estimates to properly
sum to the total patient mortality.

In contrast, utilizing patient death as a competing risk
relative to revision of a primary THA, the sum of probabilities
for the 2 competing risks (i.e., revision THA and patient

mortality) is meaningless. Considering revision as a competing
risk relative to patient death is also meaningless. This is not an
argument against patient death as a competing risk relative to
THA revision, but demonstrates that this analysis deviates from
the original intention of competing-risk analysis.
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TABLE Ill Cox and Fine and Gray Regression Models for Risk of Revision*

Cox Model for ho4(t)T

Fine and Gray Model for State 1

Unadjusted Adjusted¥

Unadjusted Adjusted¥
Uncemented§ 2.69 (2.57 to 2.81); <0.001 1.56 (1.47 to 1.65); <0.001 3.71 (3.56 to 3.87); <0.001
Age, per 5 yr 0.87 (0.87 to 0.88); <0.001
Male sex# 1.46 (1.41 to 1.52); <0.001

1.60 (1.51 to 1.70); <0.001
0.82 (0.81 to 0.83); <0.001
1.31 (1.26, to 1.36); <0.001

*Values are given as the hazard ratio with the 95% Cl in parentheses, followed by the p value. Thp.(t) is the hazard for shifting to State 1. $Adjusted
for age and sex. §Compared with cemented. #Compared with female sex.

Bilateral THA is another complicating issue. In the classical
approach, Kaplan-Meier estimates can be adjusted to account
for multiple implants per patient®. Furthermore, multilevel
approaches can be utilized to analyze multiple implants within a
single patient (e.g., finger arthroplasties, dental implants, or dental
fillings)”.

For the competing-risk approach, considering multiple
or bilateral implants becomes problematic. Simple cumulative
incidence functions or regression models, ignoring bilateral
implants, are inappropriate because the risks of revision for the
2 THAs are related”.

Including random effects in the analysis will lead to a
wrong dependency between the competing risks (e.g., see page
260 in the book by Aalen et al.’"). The appropriateness of uti-
lizing robust variance estimates in regression models or calcu-
lating cumulative incidence functions based on patient-averaged
hazards is also debatable.

For bilateral THAs, each THA may experience patient
death, resulting in the patient counted as dying twice on the
same date. Such “double counting” results in a strong depen-
dency between the bilateral THAs for the time to patient death.
van der Pas et al. discovered that this problem can be exacer-
bated by consecutive implants, as these will always have a
shorter time to patient death, resulting in unnecessary bias™.
This problem also increases when a patient has >2 implants (e.g.,
in the fingers). These examples represent multiple unnecessary

problems related to competing-risk models that are not present in
the classical methods.

The same problems as in competing-risk models are
present for illness-death models. Additionally, if a patient dies
with 1 revised and 1 intact primary THA, a problematic depen-
dency occurs between the 2 hazards (shifts) to patient death.

To give an example: for patients with pacemakers, failure
of the pacemaker may be 1 of several causes of death. Therefore,
adding the time of pacemaker failure as a competing risk for
patient death is sensible. However, for an analysis of the lon-
gevity of pacemakers, death of the patient (as a result of causes
other than pacemaker failure) leads to a loss of follow-up
(censoring) of the pacemaker (i.e., the pacemaker was still
working at the time of patient death). For the pacemaker itself,
an empty battery, loose cables, etc., may be competing risks of
failure.

For some situations, competing-risk analyses may at first
glance seem odd, but they may also hold additional value.
Consider the lifetimes of infants with special needs™. Death of
the mother as a competing risk can be a sensible inclusion
from a resource-planning perspective because extra resources
may be required to care for the infant following the death of the
parent.

Thus, analysis of revision THA with patient death as a
competing risk can be useful from a resource-planning per-
spective because it helps to predict the future burden of

TABLE IV Probability Models for Revision THA (State 1), Based on Pseudo-Data*

Classical Survival Model

Competing-Risk Model

lliness-Death Model

Unadjusted Adjustedt

Unadjusted

Adjustedt Unadjusted Adjustedt

<0.001 <0.001

Age, per 5 yr 0.88 (0.87 to 0.90);
<0.001

Male sex§ 1.08 (0.99 10 1.17);
0.080

Uncemented$ 2.60(2.42102.78); 1.67 (1.51t0 1.83); 3.53(3.31t03.76); 1.95(1.79t02.13); 4.60 (4.30 to 4.93); 2.26 (2.06 to 2.49);
<0.001

<0.001 <0.001 <0.001

0.86 (0.85 to 0.87); 0.83 (0.82 to 0.85);
<0.001 <0.001

0.95 (0.88 to 1.03); 0.85 (0.78 t0 0.93);
0.202 <0.001

cemented. §Compared with female sex.

*Values are given as the hazard ratio with the 95% CI in parentheses, followed by the p value. TAdjusted for age and sex. ¥Compared with
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TABLE V Models for Differences in Restricted Mean Failure Time for Years Spent in the Revision THA State (State 1), Based on Pseudo-Data*

Classical Survival Model Competing-Risk Model Iliness-Death Model

Unadjusted Adjustedt Unadjusted Adjustedt Unadjusted Adjustedt
Uncemented¥ 4.13 (3.84 to 2.32(1.93t0 2.71); <0.001 4.31 (4.10 to 1.86 (1.58 to 2.14); 4.23 (4.05 to 1.54 (1.30 to 1.78);
4.42); <0.001 4.52); <0.001 <0.001 4.41); <0.001 <0.001
Age, per 5 yr —0.45 (—-0.52 to —0.63(—0.68t0 —0.58); —0.71 (-0.75 to —0.67);
—0.39); <0.001 <0.001 <0.001
Male sex§ 0.71 (0.42 to 1.00); <0.001 0.17 (—0.04 to 0.38); —0.26 (—0.44 to —0.08);
0.110 0.004

FCompared with cemented. §Compared with female sex.

*Values are given as the beta coefficient (indicating the difference in time, in years) with the 95% Cl in parentheses, followed by the p value. TAdjusted for age and sex.

revisions. However, when assessing implant survival and the
quality of the THA procedure, competing-risk analysis cannot
be compared with and interpreted as being equal to classical
survival analysis. Presenting 1 minus the Kaplan-Meier esti-
mate with cumulative incidence functions from such analyses is
misleading and should be avoided. Patients alive with a THA
revision may need special care, and the illness-death model will
indicate the prevalence of such patients.

For the analyses in the present article, we showed that
competing-risk and illness-death models sometimes have
added value. However, these approaches do not circumvent
assumptions from the classical approaches, but introduce
additional problems not easily accounted for. Competing-
risk and illness-death models are special cases of the mul-
tistate models described by Gillam et al."”*', ignoring that
bilateral THAs are not independent for both time to revision
and patient death.

Statistical consultants guiding the analysis of implant sur-
vival should be aware of the important differences between models
and of the pitfalls when patient death is added as a competing risk.
In the case of THA survival, the Kaplan-Meier method is designed
to account for loss to follow-up for any reason. If the patient dies,
emigrates, withdraws from the study, is excluded because of a
change in health condition, or otherwise is lost from the study,
the follow-up time of the THA will be censored. However, for the
analysis of patient death and different causes of death, 1 minus the
Kaplan-Meier estimate is incorrect for the probability of dying
from a single cause. Likewise, if different causes of revision are
analyzed, 1 minus the Kaplan-Meier estimate gives incorrect esti-

mates for revision for each cause. Hence, for both these situations,
the competing causes—of patient death or THA revision—must
be considered. When analyzing the overall risk of revision fol-
lowing THA, the Kaplan-Meier method and Cox regression are
appropriate and correct, and should therefore be advocated. ®

Note: The authors thank the orthopaedic surgeons of Norway for their excellent reporting of joint-
replacement surgeries to the national register.
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