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Background: Clinical tools based on machine learning analysis now exist for outcome prediction after primary anterior cruciate
ligament reconstruction (ACLR). Relying partly on data volume, the general principle is that more data may lead to improved
model accuracy.

Purpose/Hypothesis: The purpose was to apply machine learning to a combined data set from the Norwegian and Danish knee
ligament registers (NKLR and DKRR, respectively), with the aim of producing an algorithm that can predict revision surgery with
improved accuracy relative to a previously published model developed using only the NKLR. The hypothesis was that the addi-
tional patient data would result in an algorithm that is more accurate.

Study Design: Cohort study; Level of evidence, 3.

Methods: Machine learning analysis was performed on combined data from the NKLR and DKRR. The primary outcome was the
probability of revision ACLR within 1, 2, and 5 years. Data were split randomly into training sets (75%) and test sets (25%). There
were 4 machine learning models examined: Cox lasso, random survival forest, gradient boosting, and super learner. Concordance
and calibration were calculated for all 4 models.

Results: The data set included 62,955 patients in which 5% underwent a revision surgical procedure with a mean follow-up of 7.6
6 4.5 years. The 3 nonparametric models (random survival forest, gradient boosting, and super learner) performed best, demon-
strating moderate concordance (0.67 [95% CI, 0.64-0.70]), and were well calibrated at 1 and 2 years. Model performance was
similar to that of the previously published model (NKLR-only model: concordance, 0.67-0.69; well calibrated).

Conclusion: Machine learning analysis of the combined NKLR and DKRR enabled prediction of the revision ACLR risk with mod-
erate accuracy. However, the resulting algorithms were less user-friendly and did not demonstrate superior accuracy in compar-
ison with the previously developed model based on patients from the NKLR alone, despite the analysis of nearly 63,000 patients.
This ceiling effect suggests that simply adding more patients to current national knee ligament registers is unlikely to improve
predictive capability and may prompt future changes to increase variable inclusion.
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There has been an increased focus on outcome prediction
using machine learning in orthopaedic surgery recently.22

The primary goal of these early clinical predictive models
was to enable patient-specific risk estimation to guide
management discussions and expectations. Clinical tools
based on machine learning analysis now exist for outcome
prediction after anterior cruciate ligament reconstruction
(ACLR) including revision surgery30 and inferior patient-
reported outcomes.31 These models were developed from

analyses of the Norwegian Knee Ligament Register
(NKLR), and the revision prediction model has also been
externally validated using the Danish Knee Ligament
Reconstruction Registry (DKRR).32

The accurate prediction of outcomes after ACLR holds
value for both the patient and surgeon. However, with so
many interrelated variables contributing to the risk of
a poor outcome, it can be challenging for a clinician to
quantify that risk for the patient in the office, regardless
of his or her experience level. Machine learning represents
a novel approach to this problem and can facilitate patient-
specific risk quantification through the analysis and inter-
pretation of large volumes of data in ways that were previ-
ously unrealistic.
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Relying partly on data volume to develop predictive
algorithms, the general principle is that more data may
lead to improved model accuracy. The rationale for this is
that more data present more opportunity for the models
to ‘‘learn’’ the association between predictors and out-
comes. Therefore, the purpose of this study was to apply
machine learning to a combined NKLR and DKRR data
set, with the aim of predicting revision surgery with
improved accuracy relative to a previously published
model.30 The original NKLR model was developed using
machine learning analysis of approximately 25,000
patients, whereas the combined NKLR and DKRR data
set includes nearly 63,000 patients. The hypothesis was
that the additional patient data would result in a more
accurate prediction of the revision ACLR risk.

METHODS

This article was written in accordance with the Transpar-
ent Reporting of a multivariable prediction model for Indi-
vidual Prognosis Or Diagnosis statement.6 The statement
includes a 22-item checklist, with the goal of improving
the transparency of prediction model studies through full
and clear reporting.

Ethics

All patients provided informed consent for the NKLR, and
the Norwegian Data Protection Authority granted permis-
sion for the register to collect, analyze, and publish health
data. Data registration was performed confidentially
according to European Union data protection rules, with
all data de-identified before retrieval. The regional ethics
committee stated that it was not necessary to obtain fur-
ther ethical approval.11 Similarly, the DKRR obtained
informed consent at the time of enrollment, and patient
data were de-identified before retrieval with no further
ethical approval required.

Data Compilation

Patients who underwent primary ACLR between June
2004 and December 2020 were included. Patients missing

data for graft choice, those with a graft choice recorded
as ‘‘direct suture,’’ and those missing data for the indicator
of revision surgery were excluded. Variables considered for
analysis are shown in Table 1.

A predictor indicating if a patient scored below the
median score in the respective registry for all preoperative
Knee injury and Osteoarthritis Outcome Score (KOOS)
subscales was created. Patients who underwent revision
ACLR before the follow-up time were considered to have
experienced the event.

Machine Learning Modeling

NKLR and DKRR data were combined and then randomly
split into training (75%) and test (25%) sets used to fit and
evaluate the models, respectively. The primary outcome
was the probability of revision ACLR within 1, 2, and 5
years. R (Version 4.1.11; R Core Team) was used to fit
machine learning models that were adapted for censored
time-to-event data. ‘‘Censoring’’ refers to the fact that
patients who have not yet reached a given follow-up time
point may still contribute partial information toward that
endpoint. For example, a patient who has been revision-
free for 4 years has not yet reached the 5-year selected out-
come time point, but his or her revision-free time can still
be considered in the analysis for the 5-year revision risk.
Censoring also accounts for the fact that patients who
have not yet undergone a revision procedure may ulti-
mately undergo revision surgery in the future.

Four models intended for this type of data were used:
Cox lasso, random survival forest, gradient boosting, and
super learner. These models represent a range of
approaches regarding the flexibility of model fitting and
the number of variables incorporated. Cox lasso is a semi-
parametric, penalized regression model that selects a sub-
set of the most important predictor variables for
inclusion.41 Random survival forest is a nonparametric
model, meaning that it does not require prespecification
of a model structure, and uses all available variables;
this model is an adaptation of the widely used tree-based
random forest method for censored data.17 Gradient boost-
ing is also a tree-based, nonparametric model adapted for
censored data; this model iteratively updates to improve
the fit using all available variables.9 Super learner is an
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‘‘ensemble’’ model that creates a weighted average of other
machine learning techniques, combining them into 1 over-
all fit and thereby providing an even more flexible
approach46; the super learner model combines the random
survival forest and gradient boosting models. Further
descriptions of each model are included in the Appendix
(available in the online version of this article).

Variables with nonzero coefficients were selected using
the L1-regularized Cox model (‘‘Cox lasso’’; package
glmnet; lambda value selected via cross-validation), retain-
ing the variables shown in the top panel of Figure 1.

For the random survival forest, gradient boosting, and
super learner models, a grid search method was used to
determine hyperparameters (package MachineShop).
This method compares all combinations of a range of possi-
ble hyperparameter values and chooses the optimal combi-
nation based on a performance metric: in this case, the C-
index, described below. The random survival forest model
(package randomForestSRC) was trained using the follow-
ing hyperparameters: node size of 300, 10 variables per
split, and 500 trees. The gradient boosting model (package
gbm) was trained using a shrinkage parameter of 0.01,
interaction depth of 3, minimum node size of 100, and
1,000 trees. The super learner model was trained using
the same hyperparameter values for the random survival
forest and gradient boosting models and utilizing the
SuperModel function (package MachineShop) to deter-
mine, via cross-validation, the optimal weighting of the
component models. All 4 models were restricted to patients
with complete data for the predictors used (see Table 1 and
Missing Data section).

Model Evaluation

Model performance was evaluated by calculating survival
probabilities with each model for observations in the hold-
out test set. Concordance and calibration were then

TABLE 1
Patient and Surgical Characteristicsa

Value
(N = 62,955)

Revision 3205 (5)
Follow-up time or time to revision,

mean 6 SD, y
7.6 6 4.5

Age at surgery, median (IQR), y 26 (20-36)
Age at injury, median (IQR), y 24 (18-34)

Missing, n 1870
Sex

Male 36,509 (58)
Female 26,446 (42)

Preoperative KOOS–Quality of Life
score (of 10), mean 6 SD

3.63 6 1.80

Missing, n 29,512
Preoperative KOOS-Sport score

(of 10), mean 6 SD
4.12 6 2.69

Missing, n 29,708
All preoperative KOOS scores below median 6372 (19)

Missing, n 29,323
Activity that led to injury

Nonpivoting 20,391 (32)
Pivoting 35,851 (57)
Other 6162 (10)
Missing, n 551

Meniscal injury
Injury without repair 20,328 (32)
Injury with repair 10,554 (17)
None 32,061 (51)
Missing, n 12

Cartilage injury
Grade 1-2 8766 (14)
Grade 3-4 3223 (5)
None 50,878 (81)
Missing, n 88

Graft choice
Bone–patellar tendon–bone 15,639 (25)
Hamstring tendon 43,518 (69)
Quadriceps tendon 2520 (4)
Other 1278 (2)

Tibial fixation device
Interference screw 55,792 (89)
Suspension/cortical device 3643 (6)
Other 2356 (4)
Missing, n 1164

Femoral fixation device
Interference screw 16,434 (26)
Suspension/cortical device 39,742 (63)
Other 4822 (8)
Missing, n 1957

Fixation device combination
2 interference screws 15,865 (25)
Interference screw (femur) and

suspension device (tibia)
236 (0.4)

2 suspension/cortical devices 2994 (5)
Suspension device (femur) and

interference screw (tibia)
34,895 (55)

Other 6529 (10)
Missing, n 2436

Injured side
Right 32,147 (51)

(continued)

TABLE 1
(continued)

Value
(N = 62,955)

Left 30,807 (49)
Missing, n 1

Previous surgery on opposite knee 4839 (8)
Missing, n 2946

Previous surgery on same knee 10,312 (16)
Missing, n 673

Time from injury to surgery, median (IQR), y 0.61 (0.33-1.32)
Missing, n 2083

Registry
DKRR 34,554 (55)
NKLR 28,401 (45)

aData are reported as n (%) unless otherwise indicated. DKRR,
Danish Knee Ligament Reconstruction Registry; IQR, interquar-
tile range; KOOS, Knee injury and Osteoarthritis Outcome Score;
NKLR, Norwegian Knee Ligament Register.
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calculated using methods adapted for censored data. Con-
cordance was determined using the Harrell C-index at 1-,
2-, and 5-year follow-up. The C-index is a generalization
of the common area under the receiver operating

characteristic curve metric. As with the area under the
curve, it ranges from 0 to 1, with 1 indicating perfect con-
cordance. The C-index measures the proportion of pairs of
observations in which predicted rankings of survival

Figure 1. The 4 plots show the relative feature importance in each of the machine learning models. The highlighted bars indicate fea-
tures selected for the Cox lasso model. The random survival forest, gradient boosting, and super learner plots show features in the top
half according to the importance score for readability. Feature importance is measured on a different scale for each model, and thus,
only rankings of features, rather than scores, should be compared among the models. The Cox lasso model measures feature impor-
tance by absolute effect size. The random survival forest and super learner models use permutation-based importance, which meas-
ures the relative change in model performance after randomly permuting values of the given feature. The gradient boosting model uses
the difference in the error rate if the feature was to be removed, normalized to a total sum of 100. BQT, quadriceps tendon autograft
with bone; comb, combined; cort, cortical; fix, fixation; KOOS, Knee injury and Osteoarthritis Outcome Score; Men, meniscus; QOL,
Quality of Life; QT, quadriceps tendon autograft; Sport, Sport and Recreation Subscale; susp, suspension; Yrs, years.
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probabilities correspond to actual rankings.14 Furthermore,
calculation of the C-index is limited to pairs of patients with
sufficient information to determine the true ordering: either
both patients must have known times to revision or one has
undergone revision surgery and the other is censored (no
revision yet, with the time since surgery at least as long
as the other patient’s time to revision). For example, a con-
cordance of 0.80 would mean that for a random pair of
patients, risk estimates match the true ordering of times
to revision approximately 80% of the time.

Calibration is a measure of the accuracy of predicted
probabilities that compares expected outcomes with actual
outcomes. We calculated calibration using a version of the
Hosmer-Lemeshow test that accounts for censoring.47 This
statistic sums the average misclassification in each pre-
dicted risk quintile and converts the sum into a chi-square
statistic. Larger values of calibration indicate worse accu-
racy and correspond to smaller P values, with statistical
significance indicating a rejection of the null hypothesis
of perfect calibration.

Missing Data

Models were trained using observations from the training
set with complete data on all variables. The models were
then evaluated using observations from the test set with
complete data on all variables needed for a given model.
To assess the effect of restricting data to complete cases,
we re-trained and re-evaluated the models using multiple
imputation. This is a common technique for dealing with
missing data that fills in incomplete values based on pat-
terns in the data. Multiple imputation allowed the assess-
ment of the reasonableness of restricting the analysis to
complete cases. Multiple imputation by chained equations
was conducted with 5 imputations on training and test
data (package mice). The variables with nonzero coeffi-
cients for the Cox lasso model with complete cases were
used to refit the model with each imputed training data
set, averaging predictions over the 5 imputations. The

random survival forest, gradient boosting, and super
learner models were similarly refit. A bootstrap procedure
was used to compare the calibration between the complete
case and multiply imputed models.

RESULTS

Patient Data

Table 1 details the characteristics of the population at the
time of surgery and shows all variables included for the
analysis. After data cleaning, the combined registries’ pop-
ulation consisted of 62,955 patients, with 55% from the
DKRR and 45% from the NKLR. The primary outcome,
revision surgery, occurred in 5% of patients with a mean
follow-up of 7.6 6 4.5 years. The population was 58%
male, with a median age at the time of the primary injury
of 24 years (interquartile range, 18-34 years) and a median
age at the time of surgery of 26 years (interquartile range,
20-36 years).

Model Performance

The 3 nonparametric models—random survival forest, gra-
dient boosting, and super learner—had moderate concor-
dance (0.67) at all follow-up times, with 95% CIs ranging
from 0.64-0.69 to 0.65-0.70 (Table 2).

The Cox lasso model performed more poorly, with a con-
cordance of 0.58-0.59. The Cox lasso model showed moder-
ate evidence of miscalibration (P = .01-.043) at 2 and 5
years. The other 3 models were better calibrated, with
the exception of the super learner model at 1 year (P =
.034) and 5 years (P = .008). The random survival forest
and gradient boosting models also demonstrated moderate
evidence of miscalibration at 5 years. Model performance
for the original NKLR algorithm demonstrated similar
concordance (0.67-0.69) and calibration.30

Model performance with imputation is presented in
Table 3.

TABLE 2
Model Performance With Complete Case Training Data

Concordance (95% CI) Calibration Statistic Calibration P Value

1 y
Cox lasso 0.59 (0.56-0.61) 7.19 .066
Random survival forest 0.67 (0.64-0.69) 5.54 .136
Gradient boosting 0.67 (0.65-0.70) 7.48 .058
Super learner 0.67 (0.65-0.69) 8.67 .034

2 y
Cox lasso 0.58 (0.56-0.61) 8.17 .043
Random survival forest 0.67 (0.64-0.69) 6.42 .093
Gradient boosting 0.67 (0.64-0.69) 4.53 .210
Super learner 0.67 (0.64-0.69) 4.10 .250

5 y
Cox lasso 0.58 (0.56-0.61) 11.37 .010
Random survival forest 0.67 (0.65-0.69) 9.27 .026
Gradient boosting 0.67 (0.64-0.69) 11.07 .011
Super learner 0.67 (0.64-0.69) 11.82 .008
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Multiply imputed data did not show notable differences
from the complete case analysis. The concordance 95% CIs
were nearly identical in all cases. Observed calibration
ratios from all 4 models were compared with the bootstrap
distribution, and all the observed ratios were within the
95% CI. This suggests that there was no significant differ-
ence in calibration between the complete case and multiply
imputed models.

Factors Predicting Outcome

The most important factors predicting revision surgery,
according to the 3 best-performing models, included age
at the time of surgery and injury, years between injury
and surgery, graft choice, and preoperative KOOS–Quality
of Life and KOOS-Sport and Recreation scores. Variables
in approximately the top half by feature importance in
the random survival forest, gradient boosting, and super
learner models are shown in the bottom 3 panels of Figure
1. Variables with nonzero coefficients in the Cox lasso
model are shown in the top panel of Figure 1. The Cox lasso
model quantifies feature importance in terms of the abso-
lute value of the associated effect size. The gradient boost-
ing model uses the difference in the error rate if the feature
was to be removed. The random survival forest and super
learner models use permutation-based variable impor-
tance, measuring the relative change in model perfor-
mance after randomly permuting values of the given
variable.

DISCUSSION

Machine learning analysis of the combined NKLR and
DKRR enabled the prediction of revision surgery after pri-
mary ACLR with moderate accuracy. The most important
finding of this study, however, was that this analysis of
nearly 63,000 patients yielded similar prediction accuracy
as a previous study of approximately 25,000 patients.30,32

This suggests that the ceiling effect of the registries has
been reached, and the addition of more patients is unlikely
to appreciably improve prediction accuracy. This informa-
tion can be used to further the evolution of national
ACLR registries regarding variable inclusion and data
collection.

Machine learning applications within orthopaedic sur-
gery have been increasing at an exponential rate in recent
years.22 These advanced statistical techniques can evalu-
ate large data sets and recognize complex interactions
between variables.28 ‘‘Learning’’ from these interactions,
machine learning models can create algorithms capable
of predicting outcomes for patients, often at a level of accu-
racy superior to expert humans.3,8,37,39,40,45,50

Similar to how humans learn through repetition and
experience, machine learning algorithms often require
large volumes of data to optimize model accuracy. Data vol-
ume, however, is not the only factor that contributes to the
accuracy of a model. Just as important is the quality of the
data. If the data set used for model creation does not con-
sider variables that are associated with the outcome of
interest, then the full potential of the model may not be
reached. Poor data quality can also manifest as substantial
missing or incomplete data, which affects the ability of the
model to learn and form accurate associations between pre-
dictors and outcomes. Techniques such as imputation can
address some data quality inadequacies, but there are lim-
its to what may be overcome.2

After nearly 20 years of data collection by the NKLR
and DKRR, data quantity is superb, with satisfactory com-
pleteness and data accuracy.7,34-36 However, the present
study suggests that for an improvement in our ability to pre-
dict outcomes based on registry data, an evolution in the
variables collected is required. This represents a significant
challenge, as the balance between optimal variable collec-
tion and surgeon compliance is a delicate one.11,29 Data col-
lection must be streamlined to avoid survey fatigue, and the
addition of variables to the registry must be carefully con-
sidered, weighing the added value against the additional
onus on the surgeon, which may affect compliance.

TABLE 3
Model Performance With Multiply Imputed Training Data

Concordance (95% CI) Calibration Statistic Calibration P Value

1 y
Cox lasso 0.59 (0.56-0.61) 8.35 .039
Random survival forest 0.66 (0.64-0.69) 4.17 .244
Gradient boosting 0.68 (0.65-0.70) 7.57 .056
Super learner 0.67 (0.65-0.70) 7.99 .046

2 y
Cox lasso 0.59 (0.56-0.61) 8.81 .032
Random survival forest 0.67 (0.65-0.70) 8.96 .030
Gradient boosting 0.67 (0.65-0.70) 8.98 .030
Super learner 0.67 (0.65-0.70) 8.34 .039

5 y
Cox lasso 0.58 (0.56-0.61) 8.30 .040
Random survival forest 0.67 (0.65-0.70) 8.95 .030
Gradient boosting 0.67 (0.65-0.69) 11.53 .009
Super learner 0.67 (0.65-0.69) 14.05 .003
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Factors that may improve prediction accuracy and could
be considered for supplementation in national registers
include data regarding radiographic findings,4,12,13,18,23,33,48

adjunctive surgical procedures, clinical examination results,
rehabilitation details,38 and alternative patient-reported
outcome measures such as psychological factors.5 Preopera-
tive and postoperative radiographic indices could be manu-
ally captured, for example, tibial slope and coronal
alignment, or included as raw image files that could then
be evaluated using computer vision machine learning tech-
niques.21 The recording of additional surgical details such
as graft diameter/size, ligament augmentation, lateral
extra-articular tenodesis, or anterolateral ligament recon-
struction may also be of value, given their recent association
with outcomes.1,10,15,16,24,26,42,52 Clinical examination and
rehabilitation information such as preoperative knee laxity
grade25,43 could be obtained via third-party sources such as
physical therapists or via natural language processing of
patient chart notes.49 Finally, the KOOS may not be the
most appropriate patient-reported outcome tool for the
patient population, and an alternative measurement of
patient function, such as the baseline Marx activity level,
could be considered for inclusion in registries moving
forward.19,27

It is worth mentioning that an algorithm for the predic-
tion of revision surgery after primary ACLR will likely
never achieve perfect or even excellent performance in
the traditional sense. There are 2 main reasons for this.
First, reinjury events leading to revision surgery may
occur randomly, such as after a slip on ice or a collision on
the playing field. That randomness, combined with the var-
iance related to uncollected variables, limits the predictive
capability of ACLR failure models. The second reason is
that the outcome, in this case, revision surgery, is itself
imperfect; that is, not everyone who has experienced a fail-
ure will undergo revision surgery. This is a major consider-
ation for most clinical predictive models, which are limited
by the chosen endpoint. Although discrimination has often
been interpreted as performance .0.9 being excellent,
.0.8 being good, .0.7 being fair, and \0.7 being poor,44

most clinically useful algorithms demonstrate performance
in the range of 0.65 to 0.80.51 In fact, discrimination .0.8
for clinical predictive models may represent data misman-
agement or model overfitting.20

Modeling using combined DKRR and NKLR data
revealed some notable differences between the 2 registries.
The poor performance of the Cox lasso model is, in part,
caused by the fact that when modeled separately, the 2 reg-
istry populations led to the selection of different variables
and different effect sizes for the selected variables. The
model fit to the combined data, therefore, is unable to
achieve either of these individually optimal fits and thus
performs more poorly. The nonparametric models did not
have this limitation because they were able to fit the
data with more flexibility. This observation helps explain
the fact that although the Cox lasso model was the best
model in the previous study of the NKLR,30 here, the
more flexible models performed better.

The present study has some limitations. First, even
though several machine learning methods were considered,

it is possible that another model may have performed differ-
ently. Second, there was a high proportion of missing preop-
erative KOOS data (47%, Table 1), and most patients with
this missing variable were from the DKRR. Because preop-
erative KOOS data have been important in predicting out-
comes based on previous studies, this substantial
missingness likely contributed to the limited improvement
in outcome prediction accuracy. In addition, patients were
pooled across the entire time period from 2004 to 2020.
Therefore, this analysis may inherit bias related to temporal
changes in the revision surgery risk, as surgical indications,
techniques, and trends have evolved over time. These
changes were not directly accounted for in the present study
but likely represent a low risk of bias, given the stable revi-
sion surgery rate observed in the registries.

Regarding clinical limitations of this study, more varia-
bles are required for revision prediction using this algo-
rithm than the previously published NKLR calculator,
which only required the input of 5 variables. This means
that the present algorithms are more onerous to use in
the office setting, with no appreciable improvement in pre-
diction accuracy compared with the NKLR model. It there-
fore is likely of limited clinical value unless future external
validation demonstrates superiority with different patient
populations.

CONCLUSION

Machine learning analysis of the combined NKLR and
DKRR enabled prediction of the revision ACLR risk with
moderate accuracy. However, the resulting algorithms
were less user-friendly and did not demonstrate superior
accuracy in comparison with the previously developed
model based on patients from the NKLR alone, despite
the analysis of nearly 63,000 patients. This ceiling effect
suggests that simply adding more patients to current
national knee ligament registers is unlikely to improve
predictive capability and may prompt future changes to
increase variable inclusion.
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